搜索资源列表
基于svm的分类器
- c++ 开发的svm分类器,功能不错,支持多类,多标签分类。使用方便,欢迎下载!
naive_bayes_numeric
- 利用matlab实现的朴素贝叶斯分类器的源代码,可以用来分类或识别,自己编写的,请多指教-Using matlab Naive Bayesian classifier to achieve the source code can be used to classification or recognition, I have written, and like him Zhijiao
SVM-classifier
- 用matlab实现非线性支持向量机分类器对多类进行分类。-Using matlab to achieve non-linear support vector machine classifier for multi-class classification.
SVMclassifier
- SVM分类器,用于对多维采样点进行分类。可根据类别数修改分类器,我们的模式识别作业。-SVM classifier, multi-dimensional sampling points used for classification. Can be modified according to the number of classification categories, and our pattern recognition operation.
libsvm-mat-2[1].89-3
- svm多分类器,包括多分类和GA算法和PSO算法优化的SVM-svm multi-classifier, including the multi-classification and GA algorithm and PSO algorithm for optimization of SVM
onlineboost
- On-line AdaBoost分类器,AdaBoost分类器的改进,在线学习更新分类器,多用于目标跟踪-On-line AdaBoost classifier, AdaBoost classifiers to improve online learning update classifier, used for target tracking
fisher
- Fisher分类器,用于对多维采样点进行分类。可根据类别数修改分类器,我们的模式识别作业。-Fisher classifier, multi-dimensional sampling points used for classification. Can be modified according to the number of classification categories, and our pattern recognition operation.
svm
- 这是在模式识别中常用的一个分类器,不过这是一个线性2分类问题,对于多分类问题,可以直接转化~-This is commonly used in pattern recognition, a classifier, but this is a linear 2 classification for multi-classification problems, can be directly translated into
ClassifierforIRISdata
- 用于对IRIS数据进行分类的各种分类器,用于对多维采样点进行无监督分类。可根据类别数修改分类器,模式识别作业的部分代码。-IRIS data for the various classification categories, for sampling points on the multi-dimensional non-supervised classification. Can be modified in accordance with several types of classifi
multiboost-0.61.src.tar
- Adaboost实现,主要用于机器学习的多分类器聚合, 最终形成分类效果逐渐增强的分类器-Adaboost implementation, is mainly used for machine learning, multiple classifier aggregation, the final shape classification results show a gradual increase of the classifier
SVM
- SVM分类器,针对语音信号的分类识别应用。内容非常多,大家可以筛选着利用。-SVMclassification
bayes_classifier
- 贝叶斯分类器实现多类识别,主要用于两类的识别-BAYES_CLASSIFIER function calculates the discriminant functions for two classes.
7788
- 大名鼎鼎的方帅的博士学位论文---目前,计算机智能视频监控在理论和应用上都面临着很多难题,国内外大批学者投身于该领域的研究和探索,并且取得了大量的成果.本文是在这些成果的基础上,对计算机智能视频监控系统的关键技术进行研究.主要贡献可概括如下:首先,对目标检测技术进行了研究,并提出了一种基于背景建模的运动目标检测算法.利用统计的方法建立了基于颜色和颜色梯度的背景模型,并实时地对背景模型进行更新,最后将这两种背景模型综合考虑对目标进行了有效的检测.接着,研究了复杂背景下多目标跟踪问题,提出了基于蒙特
ensembles_pca_svm_new10v
- pca做特征降维,然后进行特征空间随机分割构造多个svm分类器,并行处理,对样本进行分类,基于特征空间的svm多分类器-using pca reduce feature dimension,split feature space and then randomly divided over svm classifier construction, parallel processing, the samples were classified, based on multi-feature sp
分类器识别
- 基于halcon,运用多层感知的分类器字符识别,和颜色识别、(Based on Halcon, multilayer perceptron classifier is used for character recognition and color recognition,)
perception
- 多分类的感知器算法,包括Ho_Kashyap的mse实现(Multiple classification of perceptron algorithms, including the MSE implementation of Ho_Kashyap)
nichingparticle-swarm-optimization
- 粒子群优化算起源于对鸟群、鱼群以及对某些社会行为的模拟,是一种基于群体智能的进化计算技术。而小生境技术则起源于遗传算法,这种方法能使基于群体的随机优化算法形成物种,从而使相应的优化算法具有发现多个最优解的能力。而多分类器集成技术则是通过多个分类器进行某种组合来决定最终的分类,以取得比单个分类器更好的性能。多分类器集成技术要求基元分类器不仅个体性能要好并且其差异度要大,这与小生境技术形成物种的能力具有很多内在的相似性。目前己经有研究者将小生境技术应用于多分类器集成,但由于传统的小生境技术仍然不完善
贝叶斯人脸识别
- Pattern-Recognition-and-Machine-Learning-master,项目包括使用贝叶斯分类器的字符识别,基于GMM的图像分割,使用PCA的人脸识别和具有径向基函数的多类SVM分类器(Pattern-Recognition-and-Machine-Learning-master)
19107matlab自编svm
- 利用原算法adaboost弱学习器基于决策树桩的方法对样本数据进行多分类(Multi-classification of sample data based on decision tree stump using AdaBoost weak learner)
SVM 多分类
- 通过一对多,和多对一的方式,将二分类svm转化成多分类分类器(Through the way of one to many and many to one, the two classification SVM is transformed into a multi classification classifier)