搜索资源列表
kdetoolbox(matlab)
- 核密度估计(kde)的工具箱,我是在做背景建模的时候遇到这方面问题找到的,希望对大家有点用处.-nuclear density estimates (kde) Toolbox, I was doing background modeling, encountered this issue to find, and I hope to you a bit useless.
核密度估计工具箱
- 核密度估计工具箱,用matlab编程的
kernel-density-estimation.rar
- 一种核密度估计,或者称作带宽选择的方法,可以估计二维尺度参数,至于多维以上的估计方法尚在开发,多维情况下个人经验好的方法是多次实验取较好值,kernel density estimation, bandwidth selection, two-dimensional scale parameter can be estimated ,for the multi-dimensional approaches are still under development, multi-dimensiona
kernel-density-
- 核密度估计 R语言编写的源代码 直接下载 帮助文件-Kernel density estimation written in R source code to download the help file
gkdj
- 以为高斯和密度估计,使用高斯核的非参数密度估计方法,对样本进行概率密度估计,程序中给出了窗宽的估算公式。-That the Gaussian and density estimation, using Gaussian kernel non-parametric density estimation method, the sample probability density estimates, the program gives the formula for bandwidth estim
KsQuantile
- 利用正态分布和核密度估计计算分位数。包括正态分布分位数函数、核估计概率密度函数、核估计累计分布概率函数、核估计计算分位数函数。-Normal and kernel density estimation using sub-digit calculation. Including the normal quantile function, kernel estimate probability density function, cumulative distribution probabilit
1
- 自适应核密度估计运动检测方法 提出一种自适应的核密度(kernel density estimation, KDE)估计运动检测算法. 算法首先提出一种自适应前景、背景阈值的双阈值选择方法, 用于像素分类. 该方法用双阈值能克服用单阈值分类存在的不足, 阈值的选择能自适应进行, 且能适应不同的场景. 在此基础上, 本文提出了基于概率的背景更新模型, 按照像素的概率来更新背景, 并利用帧间差分背景模型和KDE分类结果, 来解决背景更新中的死锁问题, 同时检测背景的突然变化. 实验证明了所提出
nkde
- 视频跟踪检测 背景核密度估计建模,欢迎指正,-Detection of the background video track modeling kernel density estimation, please correct me, thank you
seekh
- 该应用程序能用来求解高级计量经济学中的核密度估计的窗宽,根据神经元上的一片杂志改编-The application can be used to solve high-level econometric estimation of the nuclear density of the window width, according to neurons in a magazine adaptation
kde2d
- 二维核密度估计算法.以及最优化计算核宽度。-bivarite kernel estimation
mainKDEprogramLINEAR
- 核密度估计,用于识别和核密度计算,采用高斯插样。-kernel density evalue.it is used for statistical pattern recognition.
gkde
- MATLAB code,做点扩散函数和核密度估计的
Seg_By_MeanShift
- 均值漂移Mean Shift算法是一种基于核密度估计的处理方法,被广泛用于图像降噪,分割和目标跟踪中,本代码是图像分割实现。-Mean Shift algorithm is a kernel density estimation based approach is widely used for image noise reduction, segmentation and target tracking, the code is to achieve image segmentation.
234234
- 基于非参数核密度估计的Copula函数选择原理.-Based on nonparametric kernel density estimation in the Copula function selection principle
@kde
- 把那个软件包解压缩,添加到matlab路径下,运行@kde\mex\makemex.m,然后就可以调用kde函数创建核密度估计类对象,调用类对象的各种“方法”实现核密度估计、画图等-Next, running @ kde \ mex \ makemex. then can be called kde function creates kernel density estimation class object, the call of the object of "method" realiz
Nonparametric kernel density
- 计算数据的累计概率密度,采用三次样条插值计算分位点的值,区间预测,里面有具体程序及相关文献。(The cumulative probability density of the calculated data is calculated by three spline interpolation)
kde
- 给定样本点,采用高斯核密度估计,求出概率密度分布函数。(It is good to use this method to evaluate pdf)
matlab程序
- matlab编程绘制经验分布和核密度分布估计图等,用于金融计量分析(Using matlab programming to draw the empirical distribution and nuclear density distribution estimation graph for financial metrology analysis)
matlab二维核密度估计kde2d
- 二维核密度估计代码的代码,能够提供二维的概率估计(two-dimensional kernal density estimation)
kernel density estimate
- 核密度估计得背景提取的改进,通过关键桢获得背景模型(Improvement of background extraction of kernel density estimate)