搜索资源列表
Fuzzy-k-means
- 模糊核聚类及几篇文章,用于数据和图像的模糊聚类分割,效果还行-nuclear fuzzy clustering and articles for data and image segmentation fuzzy clustering, the results were OK
3713295726
- 模糊核聚类源码,用matlab编写的,另外还包括一些相应文章-nuclear source, using Matlab prepared, but also including some corresponding article
KHCSAKHC
- 该程序是硬核聚类和自适应硬核聚类的程序。
fuzzykernal
- 模糊核聚类 matlab
fcm
- 核聚类算法FCM算法及性能分析,有图片,FCM模糊C均值图象,有窗体-Kernel clustering algorithm FCM algorithm and performance analysis, pictures, FCM fuzzy C means the image has the form
Fuzzyclustering
- 模糊核聚类算法的几篇论文及matlab源码,供大家学习交流-Fuzzy clustering algorithm several nuclear dissertation and matlab source code for the U.S. study COMMUNICATION
[matlab]
- 模糊核聚类算法的几篇论文及matlab源码,可以以练代学,更好掌握模糊聚类方法。-Fuzzy Kernel Clustering Algorithm matlab several papers and source code, can be practicing on behalf of science, to better grasp the fuzzy clustering method.
FCMandKFCM
- 采用模糊聚类算法和加核模糊聚类算法进行医学图像的分割。采用matlab编程,界面处理较好。 -Using fuzzy clustering algorithm and processing of nuclear fuzzy clustering algorithm for medical image segmentation. Using matlab programming, interface, better handling.
595643603713295726
- kfcm,为模糊核聚类算法,用于将低维的数据映射到高维进行分类,是较先进的算法-kfcm, the fuzzy kernel clustering algorithm for low-dimensional data is mapped to high-dimensional classification, is a more advanced algorithms
hehanshufcm
- 用Matlab实现基于核函数的C均值聚类图像分割,实验好,好用-Using Matlab implementation of kernel-based C-means clustering image segmentation, experimental is good, easy to use
Kenel_Cluster
- 这是自己编的核聚类的c++程序!仅供参考。-This is their own series of nuclear clustering of c++ program! For reference only.
SVM
- 这个是svm的一遍小论文 比较好 基于模糊核聚类的svm多类分类方法-svm
Kenel_Cluster_demo
- Kenel_Cluster_demo 核聚类演示程序,内涵测试数据,效果不错,是核聚类初学者的好帮手-Kenel_Cluster_demo nuclear clustering demo program, meaning the test data, good results, is a good helper for beginners of nuclear clustering
Mean-shift-research-and-applications
- :对均值漂移算法的理论和应用作一全面的综述.首先根据密度函数的非参数估计推导出均值漂移公式的一 般形式,说明了均值漂移迭代算法的步骤及收敛性;然后重点讨论核函数的选择以及带宽矩阵的计算等关键技术;最 后归纳了均值漂移算法在模式检测、聚类、图像分割以及物体实时跟踪等方面的应用,并展望了均值漂移算法在理论和应用中的研究方向.-Clustering thesis
clustering
- 核方法用于聚类,方法获得了较好的效果,对于初学者有一定的帮助--this methods for clustering, methods to obtain good results, for beginners and has some help
kpca
- 基于聚类分析的核主成分分析,简单实用,希望对大家有帮助。-Based on cluster analysis of kernel principal component analysis, simple and practical, we want to help.
kfcm
- 实现了KFCM算法,对模糊图像进行聚类分析,效果良好(The KFCM algorithm is implemented)
KFCM
- KFCM 模糊核聚类 这只是KFCM的算法的文件 可以被程序调用的算法 如果有问题 把5.11式的那里的平方去掉(.^2)(KFCM fuzzy kernel clustering)
KFCM-master
- 基于核方法的模糊C均值聚类,考虑到空间数据之间的相关性,结合各点的邻域信息,在原代码中添加邻域信息:(The fuzzy C mean clustering based on kernel method, considering the correlation of spatial data and combining the neighborhood information of each point, adding neighborhood information to the origin
数据挖掘中聚类算法研究进展_周涛
- 聚类分析是数据挖掘中重要的研究内容之一,对聚类准则进行了总结,对五类传统的聚类算法的研究 现状和进展进行了较为全面的总结,就一些新的聚类算法进行了梳理,根据样本归属关系、样本数据预处理、 样本的相似性度量、样本的更新策略、样本的高维性和与其他学科的融合等六个方面对聚类中近 20多个新算 法,如粒度聚类、不确定聚类、量子聚类、核聚类、谱聚类、聚类集成、概念聚类、球壳聚类、仿射聚类、数据流聚 类等,分别进行了详细的概括。(Clustering analysis is one of the impor