搜索资源列表
ica_appD_demo
- 高校的ICA计算代码,广泛用于特征选择,降维,目标识别等-Colleges and universities ICA calculation code, widely used in feature selection, dimensionality reduction, target identification, etc.
jcwtlib-0.01.tar
- 独立成分分析(Independent Component Analysis, ICA)是近年来发展起来的一种有效的盲分离技术,最早是由法国学者Herault和Jutten于1986年提出。ICA方法的提出最初是用来解决“鸡尾酒会”问题,其过程可以归纳为,在源信号与传输通道参数均未知的情况下,仅根据源信号的统计特性,出现测信号恢复出源信号。ICA分析的关键在于根据一定的优化准则建立描述输出信号独立程度的优化判据,即目标函数,并设计相应的优化算法,寻求最优的分离矩阵,使得输出信号中各分量尽可能相互独