搜索资源列表
bayesian
- 贝叶斯分类器设计,基于VC编写的,非常好
Bayes_classifier
- 贝叶斯分类器的设计实验,内有解释利于入门学习-Bayesian classifier design experiments, which help to explain the study entry
bayes
- 用matlab完成基于最小错误率的贝叶斯分类器的设计-Done with matlab error rate based on the minimum design of Bayesian classifier
question1
- 最小错误率的贝叶斯分类器设计matlab代码实现-Bayes minimum error rate classifier design matlab code
Bayes
- 贝叶斯分类实验,设计简单的线性分类器,了解模式识别的基本方法。掌握利用贝叶斯公式进行设计分类器的方法。-Bayesian classification experiment is designed to be simple linear classifier, know the basic methods of pattern recognition. Master the use of Bayesian classifier design formula method.
Bayes_classifier_useful
- 关于贝叶斯分类器设计的实验,适合入门,上一个传错了,抱歉-Bayesian classifier on the experimental design is suitable for entry, a mass is wrong, sorry
work_for_pattern_recognition
- 通过设计线性分类器;最小风险贝叶斯分类器;监督学习法分层聚类分析;K-L变换提取有效特征,设计支持向量机对给定样本进行有效分类并分析结果。-By designing a linear classifier minimum risk Bayes classifier supervised learning method hierarchical cluster analysis K-L transform to extract efficient features, designed to
bayes
- 贝叶斯分类器的设计与实现,非常好的应用程序,能够在其上面实现人脸识别-Bayesian classifier design and implementation of a very good application, face recognition can be achieved in the above
bayescode
- 一种自己设计的贝叶斯分类器,具有一定的参考价值-A kind of self-designed Bayesian classifier, with some reference value
BayesClassification
- 贝叶斯分类器的设计,其中包括协方差相等与不等时的两类情况,分类效果很好-Bayesian classifier design, including equal and unequal covariance of two categories, very good classification performance
FullBNT-1.0.4
- 比较全面的贝叶斯工具箱,包含贝叶斯分类器等的设计等-bayes tools box
bayes_fenleiqi
- 贝叶斯分类器设计。 对两组数据(学生的英语成绩)的分类-Bayesian classifier design. On two sets of data (student performance in English) classification
matlab
- 这是另一个matlab的贝叶斯分类器设计,可用作作业用-This is another matlab Bayesian classifier design can be used as operating with
bayes1
- 最小错误率贝叶斯决策 模式识别 贝叶斯分类器设计-Minimum error rate Bayesian decision pattern recognition Bayesian classifier design
bayes2
- 最小风险贝叶斯决策 模式识别 贝叶斯分类器设计-Minimum risk Bayesian decision pattern recognition Bayesian classifier design
bayes
- matlab基于最小错误率的贝叶斯分类器设计-Bayesian classifier design matlab minimum error rate
贝叶斯分类器设计
- 利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。也就是说,贝叶斯分类器是最小错误率意义上的优化。
贝叶斯分类器
- 贝叶斯分类器设计,分参数已知和参数未知两种情况,含最大似然参数估计代码
贝叶斯分类器
- 该程序能够实现对两种样本进行贝叶斯分类,并且能够通过旋转观察两类的三维图,还能够画出超平面,更加直观的观察两类的分类。(The program can realize the Bayesian classification of two kinds of samples, and can be observed by rotating the 3D figure two class, also can draw a plane, the classification of the two cla
贝叶斯判决
- 假定某个局部区域细胞识别中正常w1和非正常w2 两类先验概率分别为: 正常状态:P(w1)=0.9 ; 异常状态:P(w2)=0.1 。 现有一系列待观察的细胞,其观察值为: -2.67 -3.55 -1.24 -0.98 -0.79 -2.85 -2.76 -3.73 -3.54 -2.27 -3.45 -3.08 -1.58 -1.49 -0.74 -0.42 -1.12 4.25 -3.99 2.88 -0.98 0.79 1.19 3.07 两类的类条件概率符合正态分布