搜索资源列表
compute-satellite-postion
- 根据15个星历参数计算卫星地心地固坐标系下的速度,位置(6个开普勒轨道参数,9个摄动参数)-compute satellite postion
satellite-pos
- GPS卫星坐标计算,根据导航卫星星历的轨道参数和摄动改正项来计算卫星的坐标-GPS satellite coordinates to calculate the correction items to calculate the coordinates of the satellite navigation satellite ephemeris orbital parameters and the perturbation
norad
- NASA用于计算摄动轨道的模型。通过编写一系列C++类,可以方便地计算卫星在不同坐标系下的位置、速度、轨根以及星下点等。相关算法经过本人初步验证,无误。-A C++ Orbit Calculation Model created by NASA which has been tested.
weixingguijiquxian
- 在考虑太阳摄动的情况下,卫星的轨道形式。-In consideration of the solar perturbations, the orbit satellites form.
GPS
- 基于C++运用广播星历获取摄动参数对GPS卫星轨道位置计算。-The use of C++ broadcast ephemeris acquisition perturbation parameter calculation of GPS satellite orbit based on location.
rowflying
- 串行编队卫星构形可观测性分析数值仿真程序,内建有二体轨道动力学模型,加入J2项摄动,并且使用了非线性EKF滤波算法。-Extended kalman filter was exploited to simulate the rowflying formation,J2 purtabation was taken into consideration
time
- 计算在地球岁差、章动、极移,太阳及太阳系各大行星摄动等影响下的较高精度月球轨道-Calculation of the Earth precession, nutation, polar motion, the sun and the solar system planets perturbed other high precision under the influence of the moon s orbit
demoparm
- 为解决传统方法在求解非线性振动系统同(异)宿分岔问题过于复杂的问题,以双曲函数摄动法为基础,通过解析非线性振动系统派生方程,再对得出的解析解进行摄动得到最终解析式,提出了计算非线性振动系统同(异)宿轨道解析式更加有效的方法,简化了现有方法求解的复杂性.(picture for heterobifurcation)
orbit_matlab
- 卫星轨道预报相关程序,包含摄动计算及坐标系转换(Satellite orbit prediction program, including perturbation calculation and coordinate system transformation)
track_J2
- 考虑J2摄动的轨道预报,时间为tle中的时间格式(Orbital prediction considering J2 perturbation)
J2
- 考虑地球扁率摄动,求解近地卫星轨道六根数,(Consider J2 perturbation to solve the number of six tracks)
orbit_integrator
- 考虑地球J2项摄动的轨道积分器,变步长,基于龙格库塔78阶,(orbital integrator considering the J2 pertubation, based on the Runge-Kutta 78 integrator, use automatic step control)
TwoBody
- 二体问题求解程序 包含两个文件: 1.orbit_solver.m 初始化程序,数值计算并画图输出。 在此设置卫星的初始位置坐标r0和速度v0,设置仿真起止时间t0和tf,然后可以直接运行即可。 2.dif_orbit_dynamic.m 轨道动力学函数,包括无摄动力学和J2摄动下的动力学方程,具体采取何种动力学需要在此程序中进行设置。(Two body problem solving program There are two files: 1.orbit_ Solver. M initial