搜索资源列表
模拟退火例子1
- 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对
模拟退火例子2
- 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对
模拟退火例子3
- 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对
SA_GA
- 基于遗传模拟退火算法的聚类算法。将模拟退火算法与遗传算法相结合用于聚类分析,由于模拟退火算法和遗传算法可以互相取长补短,因此有效地克服了传统遗传算法的早熟现象,同时根据聚类问题的具体情况设计遗传编码方式、适应度函数,使该算法更有效、更快速地收敛到全局最优解。 -Genetic simulated annealing algorithm based on clustering algorithms. Simulated annealing algorithm and genetic algo
six-humpcamelback
- 通用模拟退火优化算法 General simulated annealing algorithm 模拟退火优化算法能过较大限度的避免局部最优解 -General simulated annealing optimization algorithm General simulated annealing algorithm simulated annealing optimization algorithm can have a greater level of local optimal
moyituhuo
- 模拟退火算法的基本思想是从一给定解开始,从邻域中随机产生另一个解,接受Metropolis准则允许目标函数在有限范围内变坏,它由一控制参数t决定,其作用类似于物理过程中的温度T,对于控制参数的每一取值,算法持续进行“产生—判断—接受或舍去”的迭代过程,对应着固体在某一恒定温度下的趋于热平衡的过程,当控制参数逐渐减小并趋于0时,系统越来越趋于平衡态,最后系统状态对应于优化问题的全局最优解,该过程也称为冷却过程,由于固体退火必须缓慢降温,才能使固体在每一温度下都达到热平衡,最终趋于平衡状态,因此控制
POA-GA
- 用于求解水库群优化调度的POA-GA源程序,且在GA方法中加入了模拟退火的思想,使GA收敛到全局最优解。-Swarm optimization for solving scheduling reservoir POA-GA source, and the GA method is added to the idea of simulated annealing, so that GA convergence to the global optimal solution.
TSP
- 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,
munituihuo
- 模拟退火算法解决TSP问题,用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解-Simulated annealing algorithm to solve the TSP problem, combined with solid-annealing simulation optimiza
penumaral
- 通过分析均匀分布与Cauchy分布的分布机制,提出了一种改进的模拟退火图像盲复原算法,该算法选择Cauchy 分布为随机扰动量来产生状态扰动函数。通过计算机仿真,验证了该算法对初值的鲁棒性和复原的效果优于基于均匀分布随 机扰动量模拟退火盲解卷积算法,提高了收敛到最优解的速度 -After analyzing the distribution mechanisms of uniform distribution and Cauchy distribution,an algorith
mnth
- 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对
新建文件夹
- 利用MATLAB语言对该算法寻优过程进行了仿真,仿真结果表明该算法可以找出全局最优解。(The optimization process of the algorithm is simulated by using MATLAB language. The simulation results show that the algorithm can find the global optimal solution.)
SA
- 使用模拟退火解旅行商问题,因为这个问题本身是一个NP难问题,所以也就求不到最优解,不过应该可以求得一个比较好的解,然后再手工优化。(Using simulated annealing to solve the traveling salesman problem, because the problem itself is a NP hard problem, so it can not find the optimal solution, but it should be able to ob
chapter19基于模拟退火算法的TSP算法
- 模拟退火算法属于现代算法,可以求得复杂函数的最优解(The simulated annealing algorithm belongs to modern algorithm, and the optimal solution of complex function can be obtained)
模拟退火算法
- 模拟退火算法属于现代优化算法的一种,,实现NP-hard组优化问题的全局最优解,解决大量的实际问题(The simulated annealing algorithm is one of the modern optimization algorithms, which can solve the global optimal solution of the NP-hard group optimization problem and solve a lot of practical probl
遗传退火进化算法.rar
- 可以利用模拟退火算法通过降温求得最优解和最优规划(The simulated annealing algorithm is used to obtain the optimal solution and the most optimal planning)
sa
- 模拟退火算法实现工作指派问题求最优解,c++实现(Simulated annealing algorithm to achieve the work of the assignment problem for the optimal solution, c ++ implementation)
算法
- floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,模拟退火算法是局部最优解能概率性地跳出并最终趋于全局最优,遗传算法是一种通过模拟自然进化过程搜索最优解的方法。(The Floyd algorithm is also known as the insertion point method, which is a multi weighted graph using the idea of dynamic programming for the giv
模拟退火算法
- 提出了一种基于粒子群优化(PSO)算法的径向基(RBF)网络参数优化算法,首先利用减聚类算法确定网络径向基函数中心的个数,再用PSO算法优化径向基函数的中心及宽度,最后用PSO算法训练隐含层到输出层的网络权值,找到神经网络权值的最优解,以达到优化神经网络学习的目的。最后,通过一个实验与最小二乘法优化的神经网络进行了比较,验证了算法的有效性。(Particle swarm optimization (PSO) optimization of RBF network)
遗传模拟退火
- 遗传模拟退火算法,包括遗传算法及加入退火优化,退火算法可以跳出局部最优解。