搜索资源列表
TextureAnlysis
- TextureAnlysis.m实现遥感图像的纹理分析,以 方向邻域内的灰度均值 和 灰度共生矩阵的熵 作为纹理特征,使用k-means聚类。
以K-均值聚类结果为初始解的模拟退火聚类
- 由于K-均值聚类算法局部最优的特点,而模拟退火算法理论上具有全局最优的特点。因此,用模拟退火算法对聚类进行了改进。20组聚类仿真表明,平均每次对K结果值改进8次左右,效果显著。下一步工作:实际上在高温区随机生成邻域是个组合爆炸问题(见本人上载软件‘k-均值聚类算法’所述),高温跳出局部解的概率几乎为0,因此正考虑采用凸包约束进行模拟聚类,相关工作正在进行。很快将奉献给各位朋友。-as K-means clustering algorithm for optimal local character
ClusteringanalysisbasedonSOFMnetwork
- 基于自组织特征映射网络的聚类分析,是在神经网络基础上发展起来的一种新的非监督聚类方法,分析了基于自 组织特征映射网络聚类的学习过程,分析了权系数自组织过程中邻域函数和学习步长的一般取值问题,给出了基于自组织 特征映射网络聚类实现的具体算法,并通过实际示例测试,证实了算法的正确性。 -Based on self-organizing feature map network cluster analysis, neural network is developed on the basi
th
- 模糊聚类算法的一部分,加入了邻域信息,可以更好的分割图像-Part of fuzzy clustering algorithm, joined the neighborhood information may be a better image of the partition
sfcm
- 加入邻域信息的空间模糊c均值聚类算法的代码。-Join neighborhood information, spatial fuzzy c-means clustering algorithm code.
tidu
- 邻域是沿着梯度方向的,模糊均值聚类方法。-Neighborhood along the gradient direction, the fuzzy-means clustering method.
kmeanscluster
- 加油邻域信息的K均值聚类算法,能有有效的去除噪声的干扰,达到好的聚类效果。算法的速度快,执行效率高-K-means clustering algorithms.
b
- :DBSCAN是一个基于密度的聚类算法。该算法将具有足够高密度的区域划分为簇,并可以在带有“噪声”的空间数 据库中发现任意形状的聚类。但DtLqCAN算法没有考虑非空间属性,且DBSCAN算法需扫描空间数据库中每个点的e一 邻域来寻找聚类,这使得DBSCAN算法的应用受到了一定的局限。文中提出了一种基于DBSCAN的算法,可以处理非空 间属性,同时又可以加快聚类的速度。-: DBSCAN is a density-based clustering algorithm. The alg
FLICM
- 基于局部信息的模糊C均值聚类算法(FLICM),是在FCM聚类算法的基础上结合了图像的邻域信息,有更好的鲁棒性。-Fuzzy C-means clustering algorithm based on local information (FLICM), is a combination of neighborhood information image on the basis of FCM clustering algorithm has better robustness.
matlab 蚁群算法ACO_feature_selection
- 蚁群算法用与特征选择,针对传统蚁群聚类算法收敛速度过慢的问题,提出一种对蚁群算法进行改进的聚类算法。而数据的高维使数据具有稀疏、不可聚集等特性,使聚类算法实验效果精度低和耗时大,将邻域特征选择与聚类算法结合,提出了一种蚁群聚类优化的邻域特征选择算法(Ant colony algorithm and feature selection)
KFCM-master
- 基于核方法的模糊C均值聚类,考虑到空间数据之间的相关性,结合各点的邻域信息,在原代码中添加邻域信息:(The fuzzy C mean clustering based on kernel method, considering the correlation of spatial data and combining the neighborhood information of each point, adding neighborhood information to the origin