搜索资源列表
EM-Algorithm.zip
- 最大期望值算法以及在混合高斯模型的应用的详细介绍,Expectations algorithm and the largest mixed-Gaussian model in the details of the application
gpml-matlab-v3.1-2010-09-27
- 高斯过程算法在回归和分类中的应用程序。与书本《基于高斯过程的机器学习》配套。本程序是最新的v3.1版,更新于2010-09-27-Gaussian process regression and classification algorithm in the application. And the book " machine learning based on Gaussian process" support. This program is the latest v3.1
prtools
- 一个强大的统计模式识别工具箱,包含高斯分类器,高斯混合模型,主成分分析,支持向量机等常见分类方法。-A powerful statistical pattern recognition toolbox, including the Gaussian classifier, Gaussian mixture model, principal component analysis, support vector machines and other common classification met
Em
- 通过em算法实现对数据的高斯混合模型的分类-Em algorithm through implementation of data Gaussian mixture model classification
code
- 本贝叶斯分类器可以实现对二维高斯分布样本的分类-The Bayesian classifier can achieve two-dimensional Gaussian distribution of the classification of samples
K-meansNB
- :将K—means算法引入到朴素贝叶斯分类研究中,提出一种基于K—means的朴素贝叶斯分类算法。首先用K— me.arks算法对原始数据集中的完整数据子集进行聚类,计算缺失数据子集中的每条记录与 个簇重心之间的相似度,把记 录赋给距离最近的一个簇,并用该簇相应的属性均值来填充记录的缺失值,然后用朴素贝叶斯分类算法对处理后的数据 集进行分类。实验结果表明,与朴素贝叶斯相比,基于K—means思想的朴素贝叶斯算法具有较高的分类准确率。-: K-means algorithm will
bayesgauss
- 图像模式识别中使用的高斯型贝叶斯分类器,提供完整的参数选择-Gaussian Bayesian classifier
GKIT
- 基于广义高斯模型的自动阈值选取(GKIT),用于图像分割、图像分类。-GKIT:Threshold Selcetion Based on the Generalized Gaussian Models,for image segmentation and classification
gmmMatlab
- 关于高斯混合模型(GMM)的matlab源代码-是用于训练分类的不错的源代码-On the Gaussian mixture model (GMM) of the matlab source code- is used to train a good classification of the source code
gaussian_mixture_model
- 基于高斯混合分布的假设,利用EM算法对数据进行分类-classification based on the Gaussian Mixtrue Models using EM algorithms
GMM_VC
- 高斯混合模型的vc程序,可以在数学建模中使用,对图片分类-source code of gmm on vc
Ionosphere_LR
- 电离层的贝叶斯分类器,使用matlab编程开发,具有正确率高的优点-Ionosphere Bayesian classifier, using the matlab program development, the advantages with the correct rate
GMM_background_src
- 基于有限混合高斯模型的数据分类 1、使用基于有限高斯混合模型的EM算法对数据样本进行归类 2、使用C++或者Matlab语言编程环境实现该算法,并用给定的数据包对算法的正确性进行检验 -Gaussian mixture model based on limited data classification 1, using the finite Gaussian mixture model based on EM algorithm to classify the data sam
IEEEtransactions_on-pattern-analysis
- 基于高斯过程的贝叶斯分类,详细介绍了高斯过程-Bayesian Classification With Gaussian Processes
Baysian+Gaussian
- 用matlab实现输入数据的两分类,里面有三个文件,其中两个是被调用函数(Two categories of input data implemented by MATLAB)
EmGm
- 图片配准,点集分类,采用EM方法求解高斯混合模型。(Image registration, point set classification, EM method is used to solve the Gauss mixture model.)
gpml
- 使用高斯过程构建主动学习算法,对个人相册集进行分类(An active learning algorithm is constructed using the Gauss process to categorize individual photo albums)
3.贝叶斯分类器
- 贝叶斯定理是用数学的方法来解释生活中大家都知道的常识,而机器学习使用的各种算法中,最常见的就是贝叶斯定理。此代码为贝叶斯分类python代码,包含高斯贝叶斯分类器,多项式贝叶斯分类器和伯努利贝叶斯分类器,并有具体的数据例子进行仿真比较(Bias's theorem is a mathematical way to explain all the common sense in life, and machine learning using various algorithms, the mos
GPstuff-4.7
- 高斯过程回归工具箱,其中包括高斯过程回归的基础例程,可用于分类,估计和预测(Gauss process regression toolbox, which includes the basic routines of Gauss process regression, can be used for classification, estimation and prediction)
GMM
- 此算法实现高斯混合,可以对初始聚类算法选择c均值和EM,可以实现密度估计和分类。(This GMM algorithm can estimate the density and class, the initial steps can select the C-mean and EM.)