搜索资源列表
龙格--库塔法
- 龙格-库塔法是工程中常用的求解微分方程的一种方法.而且具有四阶精度,因此应用很广泛.改程序给出了其源代码.-Runge - Kutta method is commonly used in engineering solving a differential equation methods. But with four bands precision, it is widely used. Changed its procedures is the source code.
龙格库塔法求解微分方程组
- 打靶法结合龙格库塔法求解微分方程组
龙格库塔求解微分方程数值解
- 工程中很多的地方用到龙格库塔求解微分方程的数值解, 龙格库塔是很重要的一种方法,尤其是四阶的,精确度相当的高。
龙格库塔法解常微分方程
- 解常微分方程的龙格库塔法C源程序
龙格库塔姿态解算
- 采用龙格库塔法对陀螺采集的数据进行姿态解算
龙格库塔法 求微分方程 fortran
- 龙格库塔法 求微分方程 fortran,希望对大家有帮助
四阶龙格库塔法解一阶二元微分方程
- 四阶龙格库塔法解一阶二元微分方程 //dxi/dt=c*(xi-xi^3/3+yi)+K*(X-xi)+c*zi //dyi/dt=(xi-b*yi+a)/c //i=1,2,3 //X=sum(xi)/N
利用四阶龙格-库塔公式计算常微分初值问题的数值解
- 利用四阶龙格-库塔公式计算常微分初值问题的数值解,The use of fourth-order Runge- Kutta ordinary differential formula of the numerical solution of initial value problem
longgeceshi 四阶龙格库塔法解微分方程组实例
- 四阶龙格库塔法解微分方程组实例,没有调用函数,而是在基本含义基础上进行编译,有助于对龙格库塔法的理解。-Fourth-order Runge-Kutta method for solving differential equations instance, did not call the function, but on the basis of the basic meaning of compiler, contribute to the understanding of Runge-Ku
FourthorderRungeKutta
- 四阶龙格库塔法的C实现 四阶龙格库塔法的C实现 -Fourth-order Runge-Kutta
用四阶龙格库塔法求解
- 用四阶龙格库塔法求解一阶微分方程组的通用程序,C++编写-Fourth-order Runge-Kutta method for solving a common procedure order differential equations, C++ writing
DifferentialEquation
- 利用龙格库塔法(等步长,变步长)计算椭圆方程,双曲线方程,抛物线方程等。对各类微分方程进行数值计算。-The use of Runge-Kutta method (such as step, variable step size) calculated elliptic equations, hyperbolic equations, such as parabolic equation. Various types of differential equations for numerical
超松弛插值与改进欧拉法 龙格库塔法
- 拟合超松弛线性插值,改进欧拉法与龙格库塔算法(Fitting the relaxation linear interpolation, the improved Euler method and Runge Kutta algorithm)
自适应变步长的龙格库塔法
- 使用matlab语言对计算方法中的自适应变步长的龙格库塔法的实现(The Realization of Runge - Kutta Method Using Adaptive Variable Step Size in Computational Method with matlab Language)
龙哥库塔
- 应用龙格库塔法,解决迫击炮的弹道轨迹,可以调节道道的角度,有图片展示。(Using the Runge Kutta method to solve the trajectory of the mortar, the angle of the road can be adjusted and the picture can be displayed.)
4阶龙格库塔法求解二阶微分方程
- 基于打靶法采用4阶龙格库塔法对而降常微分方程进行求解求解二阶微分方程(Solving the Second Order Differential Equation by Solving the Fourth Order Runge-Kutta Method Based on the Shooting Method)
龙格库塔法求解延时微分方程matlab
- matlab利用龙格库塔放法计算延时微分方程 龙格库塔 延时微分方程 matlab(Matlab uses Runge-Kutta method to calculate delay differential equation matlab)
四阶龙格库塔法解数值微分
- 程序主要实现了四阶龙哥库塔,程序注释很详细(The fourth-order Longkouta is mainly realized, and the program annotations are very detailed.)
龙格库塔法的编程
- 龙格库塔求解微分方程数值解,工程中很多的地方用到龙格库塔求解微分方程的数值解, 龙格库塔是很重要的一种方法,尤其是四阶的,精确度相当的高(Runge Kutta is used to solve the numerical solution of differential equation in many places in the project, Rungekutta is a very important method, especially the fourth-order one,
四阶龙格-库塔法
- 利用四阶龙格库塔求解微分方程,并给出方程实例。(The fourth order Runge Kutta is used to solve the differential equation and an example is given.)