搜索资源列表
LSSVM
- 这是LSSVM最小二乘仿真程序,希望对大家有用!
LSSVM
- 本程序是一个用LSSVM实现简单煤炭数据先拟合程序,用MATLAB编写。
LSSVM简单预测程序
- MATLAB简单lssvm预测模型
lssvmpso.rar
- 智能微粒群为最小二乘支持向量机调参的示例程序(LSSVM+PSO),Intelligent Particle Swarm and least squares support vector machine modeling(LSSVM+ PSO)
LSSVM-Imatlab
- 支持向量机回归MATLAB代码程序,程序齐全-very goodvery goodvery goodvery goodvery good
LSSVM
- 可以利用最小二乘支持向量机进行训练和预测-LSSVM for modeling and predicting.
GA
- 在matlab平台下,用GA对的lssvm的参数进行优化,很有用的东西。-Platform in matlab, using the GA to optimize parameters lssvm, very useful things.
tutorial1_5
- LSSVM的使用指南,每个函数都有详细的介绍.只可惜是英文版的,没有中文版对照.不过可以加强你的英文水平也不错哦!-LSSVM use guide, each function are introduced in detail. It is a pity that only the English version, there is no Chinese version of the control. But you can enhance the standard of English, oh
LSSVM
- LSSVM,生产过程中4-CBA的PTA软测量 -LSSVM, the production process of 4-CBA Soft Sensor PTA
LSSVM
- 本程序是一个用LSSVM实现简单负荷预测数据,用C编写。-This procedure is a simple to use LSSVM first load forecast data fitting procedure, C preparation.
Lssvm
- 此为基于LSSVM工具箱的Matlab回归测试程序代码模板源码。-This is based on the Matlab toolbox LSSVM regression test program source code templates.
lssvm
- 一个简单的lssvm程序,用与最小二乘的回归预测-A simple ls svm program, with the least-squares regression
LSSVM-master
- LSSVM算法 数据回归 java 适合项目开发(LSSVM algorithm, java)
LSSVM
- lssvm用于时间序列预测的matlab程序(LSSVM for time series prediction)
PSO-lssvm
- 利用PSO-LSSVM算法实现模式识别功能(Using PSO-LSSVM algorithm to realize pattern recognition)
lssvm-iron
- 使用lssvm预测钢铁行业电量,使用于电力负荷预测人员使用(Using LSSVM to predict the power of iron and steel industry)
PSO-LSSVM
- PSO-LSSVM算法的matlab实现,利用PSO算法对LSSVM模型的初始参数求解,以期望得到最好的模型。(PSO-LSSVM algorithm is implemented in matlab, and PSO algorithm is used to solve the initial parameters of LSSVM model in order to get the best model.)
PSO优化LSSVM工具箱——分类部分
- PSO-LSSVM分类测试程序代码模板,PSO优化LSSVM工具箱——分类部分(PSO-LSSVM Classification Test Program Code Template, PSO Optimizing LSSVM Toolbox-Classification Part)
LSSVM
- 结合风场实时数据以及风场气象数据,分析了实时数据并制定了数据清洗规则;针对风电功率预测领域预测精度低的问题,采用lssvm算法进行预测。(Combined with real-time wind field data and wind field meteorological data, the real-time data was analyzed and data cleaning rules were formulated. For the problem of low predictio