搜索资源列表
20090226
- 从盲声源信号的独立性出发!提出了一种新的盲声源混合信号分离方法:该方法基于信号联合概率的 分布统计!利用信号联合概率的方向导数熵最小获得最佳的旋转角度!最终实现盲信号分离:与快速独立分 量分析方法及神经网络方法相比!该方法不需要迭代计算:采用新的盲声源信号分离方法对轴承试验台的混 合声音信号进行识别!将电机和滚动轴承的声音分离出来!进而可以准确识别机械的故障-Blind sound source from the independence of the starting signal
bearigout
- 轴承外环故障诊断,故障设置为外环局部剥落,故障特征频率为外环通过频率或倍频理论计算得到475.6Hz.-Bearing outer ring fault diagnosis, fault set to the outer ring local spalling, the failure characteristic frequency for the outer ring through the frequency or frequency theoretical calculations 47
bearingroll
- 轴承滚动体故障诊断,故障设置为滚动体局部剥落,故障特征频率为外环通过频率或倍频理论计算得到218.98Hz.-Rolling bearing fault diagnosis, fault set rolling local spalling, the failure characteristic frequency for the outer ring through the frequency or frequency theoretical calculations 218.98Hz.
FFT_3D
- 针对轴承故障,利用信号采集系统采集三种故障信号,应用FFT,画出3维频谱-For the bearing failure, the use of signal acquisition system collected three kinds of fault signals, applied FFT, draw three-dimensional spectrum
bearing-fault-frequency-calculation
- 故障频率计算程序,计算轴承各部件的故障频率-Failure rate calculation program to calculate the bearing parts of the fault frequency
nnt
- 应用遗传算法进行电机运行故障检测,分别为电机轴承滚珠故障、电机轴承内圈故障、电机轴承滚珠和内圈组合故障,其中以40组数据为训练样本,4组数据为测试样本。-Motor fault detection based on Genetic Algorithms,Motor ball bearing failure, the the motor bearing inner ring failure, the motor bearing balls and inner ring combination fa
f14_1xiugai
- 轴承外圈故障——利用小波变换检测轴承外环故障-Bearing outer ring failure- using wavelet transform outer bearing fault detection
wvd
- 这是一个轴承故障分解程序,给予小波变换,小波去噪,小波重构与EMD相结合,有时频谱,边际谱,功率谱-This is a to bearing failure decomposition program given wavelet transform, wavelet denoising wavelet reconstruction combined with EMD, sometimes the spectrum, marginal spectrum, power spectrum
332
- 齿轮箱早期的故障信号往往十分微弱,信噪比低,这大大限制了已有诊断方法在早期诊断中的应用,因此如何获取真实的振动信号是提高齿轮箱早期故障诊断质量的关键,独立分量分析(ICA)为此提供了一种新的思路。文 中研究了ICA在齿轮箱故障早期诊断中的应用,首先分析了齿轮箱的混合振动信号模型,然后针对具体的轴承故障进行了实验,并使用快速ICA算法分离出轴承的振动信号-The early gearbox fault signal is often very weak, low signal-to-noise
mainn
- 用于绘制滚动轴承故障的频谱图和包络解谱图,从而判断轴承故障-Used to draw the rolling bearing fault frequency spectrum and spectral envelope solutions, in order to determine bearing failure
Bearing_failure_analysis
- 共振解调,轴承故障分析程序,对故障信号进行小波分析,获取轴承故障信息-Demodulated resonance, bearing failure analysis program, the fault signal wavelet analysis for bearing fault information
ex001
- 基于matlab小波变换的轴承故障外圈点蚀分析。-Based on wavelet transform matlab punctuate eclipse outer bearing failure analysis.
kpca
- 核主成分分析,用于轴承故障,人面识别,水位分布等的数据非线性提取。-Kernel principal component analysis for data bearing failure, human face recognition, water distribution and other non-linear extraction.
Fast-Kurtogram
- 轴承故障谱峭度分析,打开直接运行,包含包络谱分析-Bearing failure analysis of spectral kurtosis, open directly run, including envelope spectrum analysis
bearing-envelope-analysis-
- 对轴承振动信号进行滤波和包络频谱分析,可通过包络谱发现轴承故障,也可用于其他故障诊断的研究,程序已调试通过-Bearing vibration signal filtering and envelope spectrum analysis, bearing failure can be found through the envelope spectrum can also be used to study other troubleshooting procedures have been d
lly1
- 针对滚动轴承故障信号具有非平稳、非高斯的特点,提出了将时域分析与小波分析相结合的方法对滚动轴承进行故障诊断。在研究不同信号分析方法理论的基础上,以滚动轴承外圈故障振动信号为例,采用多种信号处理方法进行了分析。结果表明,各种分析方法在分析轴承故障时的特点各不相同,在实际使用中,可将时域分析与小波分析综合使用,实现轴承状态的实时监测与故障的准确定位。-For rolling bearing fault signals have non-stationary, non-Gaussian, we pro
Wavelet-analysis-in-bearing-fault
- 小波分析变换在轴承故障诊断中的应用,利用小波变换检测是否有轴承外环故障。-Wavelet analysis Transform in bearing fault diagnosis using wavelet transform to detect whether there is a bearing outer ring failure.
Matlab.m
- 共振解调法诊断轴承损伤类故障的原理概述如下:当轴承某一元件表面出现局部损伤时,在受载运行过程中要撞击与之相互作用的其它元件表面,产生冲击脉冲力,由于冲击脉冲力的频带很宽,必然包含轴承外圈、传感器甚至附加的谐振器等的固有频率而激起这个测振系统的高频固有振动。根据实际情况可以选择某一高频固有振动作为研究对象,通过中心频率等于该固有频率的带通滤波器把该固有振动分离出来。然后进行包络解调,去除高频衰减振动的频率成分,得到只包含故障特征信息的低频包络信号,对这一包络信号进行频谱分析便可以容易地诊断出轴承的
xsj
- 关于一个轴承故障分解程序,里面包含小波去噪,重构等,还有EMD模态分解,并且还有各种功率谱仿真图-About a bearing failure decomposition process, which contains the wavelet de-noising, reconstruction, etc., as well as mode decomposition EMD, and there are a variety of power spectrum simulation map
Rolling bear
- 采用PCA白化和K均值对轴承故障进行聚类分析(Clustering analysis of bearing failure by PCA whitening and K mean)