搜索资源列表
-
0下载:
用来对图像进行分类。Source code for Towards Total Scene Understanding: Classification, Annotation and Segmentation in an Automatic Framework. Computer Vision and Pattern Recognition (CVPR) 2009,Li-Jia Li, Richard Socher and Li Fei-Fei. -Source code for Towards
-
-
0下载:
为了准确地对监控场景中的运动目标进行语义上的分类, 提出了一种基于聚类的核主成分分析梯度方向直方图和二叉决策树支持向量机的运动目标分类算法.利用背景减法提取运动目标前景区域, 并识别出潜在候选运动目标.利
用提出的基于聚类的核主成分分析的梯度直方图描述子提取候选运动目标的特征, 以较低维数的数据有效地描述运动目标的有效特征. 将提取的运动目标特征输入二叉决策树支持向量机, 实现多类目标的准确分类. 通过在不同视频序列上的实验验证, 提出的算法对运动目标进行较好地分类, 而且在运算速度方面较传
-
-
0下载:
提供了三类场景“bedroom”、“CALsuburb”、“industrial”的样本特征集以及原始图像,分别用线性分类器、树状分类器、SVM分类器以及AdaBoost分类器对其进行区分。其中AdaBoost分类器有部分内容调用了Vezhnevets Alexander编写的源码-Provides three types of scenes " bedroom" , " CALsuburb" , " industrial" sample fea
-
-
0下载:
自己编的小波图像融合代码 直接matlab可以运行-----------------图像融合以图像作为研究和处理对象,是一种综合多个源图像信息的先进图像处理技术,它把对同一目标或场景的多重源图像根据需要通过一定的融合规则融合成为一幅新图像,在这一幅新图像中能反映多重源图像中的信息,以达到对目标或场景的综合描述,以及精确的分析判断,有效地提高图像信息的利用率、系统对目标探测识别的可靠性及系统的自动化程度。其目的是集成多个源图像中的冗余信息和互补信息,以强化图像中的可读信息、增加图像理解的可靠性等。
-
-
0下载:
针对成像平台运动情况下的运动目标检测问题,提出了一种从特征点稀疏运动场估计到运动分类的目标检测算法。
首先通过快速特征点检测与跟踪恢复出图像稀疏运动场;然后依据特征点之间运动一致性关系实现属于同一运动模式的特征
点分类,根据分类得到的各组特征点计算场景图像重建误差,剔除重建误差最小的特征点组,实现对前景目标的检测。仿真实
验对该算法在复杂场景中检测运动目标的有效性进行了验证。-】In order to detect target in the background motion vi
-
-
0下载:
ML-KNN,这是来自传统的K-近邻(KNN)算法。详细地,为每一个看不见的实例中,首先确定了训练集中的k近邻。之后,基于从标签集获得的统计信息。这些相邻的实例,即属于每个可能类的相邻实例的数量,最大后验(MAP)原理。用于确定不可见实例的标签集。三种不同现实世界中多标签学习问题的实验研究,即酵母基因功能分析、自然场景分类和网页自动分类,表明ML-KNN实现了卓越的性能(ML-KNN which is derived from the traditional K-nearest neighbo
-
-
0下载:
We employ the pretrained deep CNN models for VHR
images scene classification, where we used VGG-Net
as the feature extractor by selecting useful layers in
order to get a good representation of the images scene.
-
-
0下载:
object classification using recognized scene text in natural images. While the state-of-the-art relies on visual cues only, this paper is the first work which proposes to combine textual and visual cues. Another novelty is the textual cue extraction.
-