搜索资源列表
-
0下载:
对图像实现骨架化操作、提取边界、执行图像开运算度、增强图像对比度并提取文本图像中的某些字符对象。-Implementation of the image skeleton operation, extraction of the border, the implementation of open computing degree images to enhance image contrast and to extract the text of some of the characters
-
-
3下载:
这是使用基于边缘的方法对文本图像中的文字进行检测的算法,可以将图像中的文字提取并标记出来。-This is the way to the edge-based text in the image text detection algorithm can extract the text in the image and mark them.
-
-
0下载:
只要解压并修改文家夹的名字为ylProject,在Visualdsp++环境下就可以了,大作业编程,已经调好,好用。dump出数据,可以在matlab中绘图。-Extract and modify the text as long as the home folder' s name is ylProject, in Visualdsp++ environment can be a big job programming, has been fine, easy to use. dump
-
-
0下载:
本文的处理手段是对输入的汽车图像进行预处理,运用车牌定位,字符分割,字符识别的方法提取车牌上的数字字符串,并以文本的形式输出。-This treatment method is to enter the vehicle image preprocessing, the use of license plate location, character segmentation, character recognition to extract license plate numbers on th
-
-
0下载:
在保密数据传递等应用中,有时采用将一句话或一段文字或一段音乐隐藏在另一段音乐中,然后利用专门的算法来提取所传的信息-Data transfer in applications such as security, sometimes using the word or a text or a piece of music hidden in another section of music, and then use a special algorithm to extract the infor
-
-
0下载:
笔画分解的matlab代码,extract是主文件,带一个参数,就是文字图像矩阵-Stroke decomposition matlab code, extract the main file, with one parameter, the text image matrix
-
-
1下载:
5相位编组法实现纹理直线边缘的检测matlab程序代码。不同于hough变换。附带文字的原理讲解-The five-phase grouping texture straight edge detection ,matlab code. Different from the hough transform. explain with the accompanying text
-
-
3下载:
可以用FFT频谱对脑电信号进行提取。我们可以利用提取出的各个波段脑电信号,来诊断一些脑部疾病或者对大脑组织的电活动及大脑的功能状态进行分析。
1.将实验测得的脑电数据文件转换为文本文件(已经过50Hz陷波), 获得在Matlab 平台上可直接使用的脑电信号数据,即0661.txt。
2.在Matlab中导入数据,并提取Fp1通道的脑电信号,通过FFT变换对α,β,θ,δ波段进行提取,并做FFT逆变换变到时域。
3.计算各个波段的功率谱。-FFT spectrum can be ext
-
-
0下载:
in this project we recognize the letters in the text by means of matlab and extract them
-
-
0下载:
Its a matlab file to extract text features and do ratings automatically.
-
-
0下载:
跨媒体检索新方法包括:CM、SM、SCM(This demo executes cross-modal retrieval experiments on
a novel dataset of Wikipedia pages.
Extract the zip file, open a matlab session and
run any of the example scritps:
- correlation matching 'demo_CM.m'
- semantic ma
-