搜索资源列表
FaceRecognitionSystem.rar
- matlab source code eigen face for face recognition,can detect pose and expression,matlab source code eigen face for face recognition,can detect pose and expression
HMMDemo.rar
- 使用OPENCV实现基于隐马尔科夫过程人脸表情识别,OPENCV use of hidden Markov process based on Facial Expression Recognition
基于弹性模板匹配的人脸表情识别程序
- 基于弹性模板匹配的人脸表情识别程序。首先针对静态表情图像进行表情图像的灰度、尺寸归一化,然后利用Gabor小波变换提取人脸表情特征以构造表情弹性图,最后提出基于弹性模板匹配及K-近邻的分类算法实现人脸表情的识别。-Flexible template matching based on facial expression recognition procedures. First of all, the expression for the static image of the gray-sca
gaborfilter
- 3种Gabor滤波器的表达方法,采用MATLAB编写,可用于人脸的识别-Gabor filters of three kinds of expression, the use of MATLAB to prepare, can be used for face recognition
ML
- 人脸识别和表情识别的神经网络算法,比较简单的一种算法-Face recognition and expression recognition of neural network algorithm, a relatively simple algorithm
face
- 人表情判断的代码,用vc++写的。 expressiondb是表情库,请放于硬盘盘根目录下。 test1是程序,运行即可。-Human facial expressions to determine the code, using vc++ Written. expressiondb is the expression library, please put in the hard disk root directory. test1 is the procedure to run.
imm_face_db.tar
- IMM FACE DATABASE 对研究人脸表情识别的朋友们很有用哦-IMM FACE DATABASE research Facial Expression Recognition friends useful Oh
kanade_takeo_1973_1
- 这可是由Takeo Kanade 撰写的人脸识别方面的文章。研究人脸表情识别与人脸识别的都需要这篇文章,这也是难得的国外资源啊!-This is written by Takeo Kanade Face Recognition articles. Research on Facial Expression Recognition and Face Recognition need this article, this is a rare foreign resources ah!
zdddsfgEHMM
- 很好的关于人脸识别的毕业论文,从中国知网付费下载得到,《基于嵌入式隐马尔可夫模型(EHMM)的人脸表情识别 》希望对大家有用。-About Face Recognition of good theses, pay-per-download from the Chinese HowNet be, " Based on Embedded Hidden Markov Model (EHMM) Facial Expression Recognition" I hope useful t
expression
- 人脸是一种重要的交互技术.利用人脸表情交互日趋重要.这是一个用人脸进行表情交互的视频,很有意思-Face interaction is an important technology. The use of facial expression of the growing importance of interaction. This is a people face to face interaction, video, very interesting
detectionofmotionpeople
- 在广泛研究前人工作的基础上,本文对运动人物的检测、跟踪与识别进行了综述。为 使分类清楚明了,本文将人物运动分析分为两大类:人体运动分析,人脸分析。人体运动分 析包括人的较大幅度的肢体运动,如手势识别、步态分析、整个人体的运动分析;人脸分析 包括人脸检测与识别、表情分析。在详细介绍了国内外研究现状后,提出了存在的问题及研 究前景。-Extensively studied in previous work on the basis of the figures in this art
wenj
- adaboost FEATURE SELECTION USING ADABOOST FOR FACE EXPRESSION RECOGNITION-FEATURE SELECTION USING ADABOOST FOR FACE EXPRESSION RECOGNITION
extract
- 很流行的一种人脸面部表情特征提取方法 C++代码-Very popular expression of a human face feature extraction method of the Department of C++ code
hausdorff
- 摘 要: 提出了一种基于改进 Ha u s d o r f f距离的人脸相似度匹配的方法, 该方法首先将人脸划分为脸型、 双眼、 鼻、 嘴等几个特征点 集, 分别计算各部分的改进 Ha u s d o r f f 距离, 然后进行加权计算相似度。利用该方法, 在 A S M( 主动形状模型) 定位人脸的基础上进 行了人脸检索。 实验表明, 利用人脸相似度计算方法对人脸特征库进行搜索, 达到 了较好的效果。同时结合 A S M 自动人脸检测, 本 方法可以全自动完成人脸匹配, 应
Gabor-base-face-recognition
- 基于高波滤波的特征提取技术,从而实现人脸识别和表情识别的目的-Based on high-wave filter feature extraction techniques, in order to achieve the purpose of face recognition and expression recognition
face
- 完整的表情识别系统一般包括人脸表情图像捕获、预处理、人脸检测与定位、 人脸分割与归一化、人脸表情特征提取、人脸表情识别。本文着重研究了人脸表 情特征提取、特征选择及表情分类等关键问题,并提出了一些改进的方法,同时 进行了仿真实验-Complete expression recognition systems typically include facial expression image capture, preprocessing, face detection and loca
eyefinder
- supplies cross-platform libraries for real-time perception primitives, including face detection, eye detection, blink detection, color tracking. Soon it will also include expression recognition, predictive color tracking, and tracking based on
Face_and_Face_exsipression_Recognition
- One of Biometrics fields is face recognition & face expression recognition ... 1- In face recognition .. we need to design authentication program by training a neural network ,there are two source codes..one of them is based on Discrete Wavelet Tr
HandbookOnFER
- A handbook on Face expression recognition
An-Algorithm-for-Face-Recognition-
- 高独特性特征的选择以及合适匹配策略的选用是人脸识别技术的关键。讨论了基于仿射不变的几何特 征SIFT算子进行人脸识别的方法。SIFT算子的计算复杂度较高,并且不同的人脸表情和图像模糊会加大特征匹 配的难度。为克服上述缺点,提出了一种新的算法,将选择6个人脸上感兴趣子区域进行描述,并根据各自的独特 性赋予不同的权值,最后在匹配过程中使用相似度的平方来减小偏差数据造成的影响。实验结果表明,该方法能 有效减轻表情变化对于身份识别率急剧下降的影响,并可显著减少计算复杂度和特征匹配时间。-