搜索资源列表
rubostaffineregressionregress.08.02.tar
- The motion within an image region is modeled using an affine transformation. Affine motion parameters are estimated using a coarse-to-fine gradient-based method. The approach is implemented using a robust M-estimation technique to make the computatio
KernelTracking
- A new approach toward target representation and localization, the central component in visual tracking of non-rigid objects, is proposed. The feature histogram based target representations are regularized by spatial masking with an isotropic kern
BBGDSA
- BBGDS演算法實現 應用於H.264編碼器之移動估測-A Block-Based Gradient Descent Search Algorithm for Block Motion Estimation in Video Coding
Real-TimeRobustAlgorithmofDigitalImageStabilizatio
- 电子稳像的实时鲁棒性算法,首先对采集到的每帧图像建立高斯金字塔。然后在高斯金字塔的顶层进行 初估计,采用图像块法得到整像素的运动估计矢量。精估计采用光流梯度法。为提高鲁棒性,运用简化的M 收敛法 进行梯度约束。最后阶段采用双线性内插对当前帧与参考帧进行匹准-Electronic image stabilization, real-time robust algorithm, first collected in the establishment of Gaussian pyramid
mpeg-encoder
- MPEG1编码器四种运动估计算法全搜索算法,梯度下降法,菱形搜索算法,四步法-MPEG1 encoder four kinds of full search motion estimation algorithm algorithm, gradient descent method, diamond search algorithm, four-step
Range-Dependent-Phase-Gradient-Autofocus
- The Phase Gradient Autofocus (PGA) algorithm has been widely used in Spotlight Synthetic Aperture Radar (SAR) to remove motion-induced blurs in the images. The PGA algorithm has been proven to be a superior autofocus method. PGA assumes a nar
CV
- 图像处理 o 梯度 边缘和角点 o 采样 差值和几何变换 o 形态学操作 o 滤波和彩色变换 o 金字塔及其应用 o 连接组件 o 图像和轮廓矩 o 特殊图像变换 o 直方图 o 匹配 结构分析 o 轮廓处理 o 计算几何 o 平面划分 运动分析和对象跟踪 o 背景统计量的累积 o 运动模板 o 对象跟踪 o 光流 o 预估器 模式识别 o 目标检测 照相机定标和三维重建 o 照相机定标 o 姿态估计 o 极线几何 函数列表 参考图像处理注意:本章描述图像处理和分析的一些函数-O gradien
tracking
- 本文提出了一种复杂条件下基于子空间梯度方向直方图跟踪的方法,通过大量样本的离线训练构建目标的投影子空间,并用梯度方向直方图在子空间的投影作为新的目标描述特征. 为了满足实时性的要求,采用积分直方图方法 提高粒子特征的计算速度 然后结合粒子滤波方法在子空间中计算粒子与训练样本集之间的相似度,进而估计目标的运动参数.-A subspace t racking method is proposed to t rack target s under complex environment s. Fi
regiongrow
- 高精度亚像素全局运动估计的上采样梯度互相关算法-Precision subpixel global motion estimation on sampling the gradient of cross-correlation algorithm
GZ
- 用于基于视频运动目标的跟踪,该算法融合了颜色直方图和梯度方向直方图的特征,能够更加精确地表征目标,较大地提高了视频目标跟踪的准确度和鲁棒性。-For video motion-based target tracking, the algorithm combines the color histogram and gradient direction histogram feature, to more accurately characterize the target, greatly im
PGA
- 相位梯度算法,可用于SAR或ISAR中的运动补偿中的相位校正。-Phase gradient algorithm can be used in the SAR or ISAR motion compensation phase correction.
1
- 本文提出了一种复杂条件下基于子空间梯度方向直方图跟踪的方法,通过大量样本的离线训练构建目标的投影子 空间,并用梯度方向直方图在子空间的投影作为新的目标描述特征.为了满足实时性的要求,采用积分直方图方法 提高粒子特征的计算速度;然后结合粒子滤波方法在子空间中计箅粒子与训练样本集之间的相似度,进而估计目标 的运动参数.实验结果表明,该方法能够在光照变化、噪声干扰、模糊、目标姿态和尺度改变,以及部分遮捎等恶劣条 件下实现准确跟踪,比传统的跟踪方法具有更高的跟踪精度和跟踪鲁棒性,能够满足
Test_7.15
- osg 小球颜色渐变动画,运动轨迹动画,三次样条曲线-osg ball color gradient animation, motion trajectory animation, cubic spline curve
GZ
- 用于基于视频运动目标的跟踪,该算法融合了颜色直方图和梯度方向直方图的特征,能够更加精确地表征目标,较大地提高了视频目标跟踪的准确度和鲁棒性。-For video motion-based target tracking, the algorithm combines the color histogram and gradient direction histogram feature, to more accurately characterize the target, greatly im
PGA
- 相位梯度自聚焦算法(PGA)的matlab程序实现,合成孔径雷达中最经典最常用的自聚焦和运动误差补偿方法-The phase gradient autofocus algorithm (PGA) of matlab implementation, the most classic of the most commonly used in synthetic aperture radar self-focusing and the motion error compensation method
as245
- Active Contour Models and Level Set algorithm, as well as several articles of the GVF, the list for the article: [1] Snakes Active Contour Models.pdf [2] Multiscale Active Contours.pdf [3] Snakes, shapes, and gradient vector flow.pdf [4] Motion of le
changeoperator_f
- Active Contour Models and Level Set algorithm, as well as several articles of the GVF, the list for the article: [1] Snakes Active Contour Models.pdf [2] Multiscale Active Contours.pdf [3] Snakes, shapes, and gradient vector flow.pdf [4] Motion of l
convertWrite
- Snakes Active Contour Models.pdf [2] Multiscale Active Contours.pdf [3] Snakes, shapes, and gradient vector flow.pdf [4] Motion of level sets by mean curvature I.pdf