搜索资源列表
K-均值聚类算法
- K-均值聚类算法,对数据进行聚类分析,可用于提取关键帧等。用matlab实现,K-means clustering algorithm, cluster analysis of data that can be used, such as key frame extraction. Using matlab to achieve
K-mean-clustering
- K-mean方法聚类 实现多幅图像的K均值方法的聚类并显示-K-mean clustering,Efficient method to achieve multiple images of the K-means clustering method and display
textureseg
- 用多尺度Gabor小波滤波器组实现纹理分割,其中聚类算法采用K均值聚类,本科毕业设计,省优秀-multi-scale Gabor wavelet,texture segmentation,k-mean clustering
k-rbf
- 程序是基于K均值聚类的RBF代码,很好的一个例子。-K means clustering procedure is based on the RBF code, a good example.
K-Means
- K均值聚类算法 C++实现的K均值聚类算法。-K means clustering algorithm C++ Achieved K-means clustering algorithm.
kMean
- clustering的经典k-mean算法源程序,VB代码-clustering k-mean algorithm, in VB
k-meams(sourcecode)
- C#实现k均值文本聚类算法,文本聚类C#源程序,k-means聚类算法-C# to achieve k means clustering algorithm, document clustering C# source code, k-means clustering algorithm
ClusterBasics-V1.0
- 各类聚类算法程序包,包含各种经典的聚类算法,例如:k-mean聚类等-Various types of clustering algorithm package, contains a variety of classic clustering algorithms, such as: k-mean clustering, etc.
kmean2
- 用VC写的关于k-mean聚类算法的程序。-Written by VC on the k-mean clustering algorithm procedure.
k-centers
- 不同于k均值聚类的k中心聚类,2007年SCIENCE文章Clustering by Passing Messages Between Data Points 中的方法-Unlike k-means clustering of the k cluster centers, in 2007 SCIENCE article, Clustering by Passing Messages Between Data Points of the Method
kmeansClusters
- Image segmentation k mean clustering
Kmeans_grayimage
- 简单的灰度图像的K均值聚类分割,Matlab实现-gray image segmentation using K-means clustering by matlab.
kmean
- k mean clustering in matlab
K_mean_Clustering
- k-mean clustering explained in pdf document.
K_mean_clustering
- k-mean clustering Matlab M-file
kMeansCluster
- k mean clustering algo
FuzzyKmeanclustering
- code for fuzzy k-mean clustering-code for fuzzy k-mean clustering..
k mean clustering
- k mean clustering algorithm
k-mean-clustering
- clustering an image to k clusters using k-mean clustering method
K-mean Clustering and RBF _V_1.0
- Radial Basis Function with K Mean Clustering using Pseudo inverse method