搜索资源列表
K-means.m
- MATLAB编写的一种模式识别里的重要的模糊聚类方法K-means算法的matlab程序.-MATLAB prepare a Pattern Recognition's important Fuzzy clustering methods K-means algorithm Matlab procedures.
K-均值聚类算法C++编程
- K-均值聚类算法的编程实现。包括逐点聚类和批处理聚类。K-均值聚类的的时间复杂度是n*k*m,其中n为样本数,k为类别数,m为样本维数。这个时间复杂度是相当客观的。因为如果用每秒10亿次的计算机对50个样本采用穷举法分两类,寻找最优,列举一遍约66.7天,分成3类,则要约3500万年。针对算法局部最优的缺点,本人正在编制模拟退火程序进行改进。希望及早奉给大家,倾听高手教诲。-K-means clustering algorithm programming. Point by point, inc
k means
- km2.m是matlab程序,test.txt是数据源
travailenmat
- matlab programming for clustering pam , k-means , dbscan , optics for image segmentation
Fast-K-means-clustering
- Fast mex K-means clustering algorithm with possibility of K-mean++ initialization (mex-interface modified from the original yael package https://gforge.inria.fr/projects/yael) - Accept single/double precision input - Support of BLAS/OpenMP
BruteSearch
- K-nearest neighbors 搜索 聚类时经常使用的一种方法 国外网站转载- The following utilities are provided: - Nearest neighbor - K-Nearest neighbors - Radius Search They al supports N-dimensions and wor
K-means.m
- K-mean均值算法的matlab功能实现-K-means to achieve the matlab function
COM_classify
- 内涵多种分类算法,K-means, fuzzyCMeans, clustertree... 解压缩后, 用matlab 的 set path 添加目录,在matlab中输入compact, 就可使用-The connotation of a variety of classification algorithms, K-means, fuzzyCMeans, clustertree ... decompress after matlab with the ' set path'
test_kMeansCluster.m
- K mean cluster matlab code
imgkmeans
- 将K均值算法用于图像分割,输入的是彩色图像,转换为灰度图像进行分割,输出结果为灰度图像.利用灰度做为特征对每个像素进行聚类,由于光照等原因,有时应该属于一个物体的像素,其灰度值也会有很大的差别,可能导致对该像素的聚类发生错误.在分割结果中,该物体表面会出现一些不同于其它像素的噪声点,因此,算法的最后,对结果进行一次中值滤波,以消除噪声,达到平滑图像的作用-The K means algorithm for image segmentation, the input is a color imag
K_mean_clustering
- k-mean clustering Matlab M-file
k-nearests-neighbour
- k-近邻算法 m文件 及其excel示范-this package invulved a m-file example of k-nearest neighbour and its corresponding excel file
kMeansCluster-Code-For-matlab.m
- The code for k-means cluster in matlab. It works well in matlab.
K-means.m
- Kmeans classifier program-Kmeans classifier program
K-means-and-Perceptron
- 该程序为matlab程序,共有三个文件,dataC.m为程序入口,实现功能对50组数据用k均值算法进行分类,再对40组数据用感知器算法训练,然后用训练得到的判别函数对剩下10组数据分类,最后与原始分类做差比较,若分类无误,则全显示为0.-Matlab program on the program, a total of three files dataC.m for program entry features 50 sets of data with k-means algorithm to
RBF_k.m
- 3.基于k均值聚类的RBF 网设计算法 - 3. RBF network design algorithm based on k-means clustering.
K-means--experiment
- 基于MATLAB的编写的K均值聚类实验多类算法,caculateCenter1.m是确定类的中心,主函数是main-Experimental multi-class algorithm based on MATLAB prepared by K-means clustering, caculateCenter1.m the center determines the class, the main function is the main
K-means
- 一种k-means聚类算法的图像分割例程,很好用。里面包括主函数和子函数的m文件以及使用的图片。-One kind of k-means clustering image segmentation algorithm routines, very good use. Which includes the main functions and subroutines m documents and pictures used.
kmeans
- 基于k均值的无监督聚类算法,输出有各个样本的类别标签,目标函数在每次迭代后的值,聚类中心以及聚类区间。内有测试数据,点击 test.m 可以完美运行。(The unsupervised clustering algorithm based on K means outputs the class labels of each sample, the value of the target function after each iteration, the clustering center a
clustering-index
- 欢迎使用和评述此工具箱,您的意见是对我们工作的支持。 此工具适合于不同有效性指标的性能比较,改进代码用于不同的应用问题等等。 (1) NCT的内容 NCT包括4个外部有效性指标和8种内部有效性指标,编制的程序文件"validity_Index.m"用于调用它们 (2) 主文件 "mainClusterValidationNC.m" 的内容 主文件设计为如何使用PAM聚类算法、如何使用有效性指标和方法来估计聚类个数。(H