搜索资源列表
Locksoft
- 文件包括rsa算法原程序及详细注释。可以实现使用1024位以上大素数进行加解密。其中包括大整数的加、减、乘、除、模幂运算,求逆元运算,以及大素数的判定等算法。稍做扩展即可在实际中应用。-Rsa algorithm for the original documents, including procedures and detailed notes. 1024 can be achieved over the use of large prime numbers for encryption an
RsaDllAndTest
- 利用大数库写的一个RSA模幂运算的小软件,该软件能够方便的进行RSA模幂运算,并且可以让读者学习大数库的使用方法。-Use of large numbers of a library to write a small RSA Modular Exponentiation software, the software can easily be RSA modular power, and large numbers can help readers learn to use the librar
RsaKit_V1.0
- 基于大数因子不可再分的RSA加密系统,因为这里只是用长整型来存储加密数据,如果素数都比较大,在乘方运算时肯定会造成内存溢出,因此这里仅仅只是验证RSA算法的思想的正确性-Can not be divided based on factors of large numbers of the RSA encryption system, because there is a long integer used to store encrypted data, if the prime was rel
rsa2
- 能够进行大数的加减乘除、幂模运算,以及RSA算法-To carry out large numbers of addition, subtraction, power mode operation, as well as the RSA algorithm
RSA-example
- 大二的时候写的RSA类头文件,集成了大数四则运算、幂模运算、米勒罗宾算法寻找大数等RSA加密必须的算法,详询《密码学原理与实践》-Sophomore writing the RSA class header file, integrated Tarsus four computing power modular arithmetic, Miller-Rabin algorithm must find large numbers RSA encryption algorithm, detailed
RsaAttack
- 包含大整数类,RSA加解密算法类,以及RSA低加密指数攻击的实现过程。大整数类实现任意大整数(可调整)的运算,重载+、-、*、/运算符,实现模幂、模逆运算,任意次幂、开任意次方运算。RSA类实现自定义密钥的加解密算法,各种转换过程。主函数提供了当公钥e很小时恢复明文的攻击方法。-It contains BigInteger class,RSA encryption algorithm class and the implementation process of RSA low encrypti
RSA-digital-signature-design
- 随机搜索大素数,随机生成公钥和私钥; 要求使用素性检测算法及高效率求逆和模幂运算 用私钥对任意长度的明文签名 用公钥对签名验证;-Random search large prime Numbers, random public key and a private key Requires the use of element detection algorithm and efficient inverse power operation and mould With the
mod_square
- 目前RSA公钥密码体制所采用的模幂运算耗时太多,处理大数据时速度很慢,所以提高运算效率便成为非常重要的研究课题,模重复平方算法通过实现指数约减达到简化计算的目的。-Currently consuming too much power operation mode RSA public-key cryptosystem used when dealing with large data speed is very slow, so improving operational efficiency
RSAjiami
- RSA算法中大数幂乘,大素数判断,求逆元,大整数乘法-RSA algorithm in the large number of power multiplier, large prime judgments, seeking inverse yuan, large integer multiplication