搜索资源列表
python-code-for-Machine-learning
- 用于机器学习的全方位python代码,包括K-近邻算法、决策树、朴素贝叶斯、Logistic 回归 、支持向量机、利用 AdaBoost 元算法提高分类性能、预测数值型数据:回归、树回归、利用 K-均值聚类算法对未标注数据分组、使用 Apriori 算法进行关联分析、使用 FP-growth 算法来高效分析频繁项集、利用 PCA 来简化数据、利用 SVD 简化数据、大数据与 MapReduce-The full range of python code for machine learning
python
- 简单的gmm聚类demo。 简单的gmm聚类demo。- U7B80 u5355 u7684gmm u808A u802A u7C2B u2002
Kmeans
- 用Python语言实现的大规模数据聚类,附实验报告(Large-scale data clustering with Python language, with experimental reports)
kmeans
- 对数据和图像进行聚类分析,k-means聚类方法多应用于模式识别,人工智能,机器学习等方面(Clustering analysis of data and images, K-means clustering method should be used in pattern recognition, artificial intelligence, machine learning and so on)
SOMPY-master
- som自组织神经网络聚类算法的python实现(Implementation of SOM clustering algorithm based on Python)
模式识别 聚类
- 模式识别作业,两种聚类算法kmeans,dbscan,python算法(pattern recognition homework)
K-means&DBSCAN
- python实现K-means聚类算法和DBSCAN算法,都是最简单的聚类(Python implements k-means clustering algorithm and DBSCAN algorithm, which are the simplest clustering)
Kmeans
- python语言实现kmeans聚类,机器学习算法(Kmeans clustering in Python language)
plot_classifier_comparison
- 基于Pythoon的数值聚类分类算法,基于Python的三维立体点的空间最近邻分类(This example shows the effect of imposing a connectivity graph to capture local structure in the data. The graph is simply the graph of 20 nearest neighbors. Two consequences of imposing a connectivity can b
Kmeans
- python实现的k-means聚类算法(k-means clustering algorithm implemented by python)
python实现代码、测试数据集及结果
- 密度距离矩阵优化聚类算法python实现(Python implementation of density distance matrix optimization clustering algorithm)
kNN
- 这是用于描述KNN聚类的python源代码,可以结合各位实际的需要使用(This is the python source code used to describe KNN clustering. It can be combined with your actual needs.)
slic-python-implementation-master
- SLIC算法实现超像素聚类,python版本为2.7(SLIC Algorithm for Superpixel Clustering, Python version is 2.7)
DENCLUE2.0 algorithm for python
- DASCAN 聚类算法例程,实现平面内点的分类(Clustering algorithm routines)
30号作业
- python实现密度峰值聚类 及相关测试数据机(Python realizes density peak clustering)
模糊聚类分析法(python)
- 运用python进行模糊聚类分析步骤如下:建立数据矩阵;数据标准化;建立模糊相似矩阵;改造相似关系为等价关系;确定分类数(The steps of Python fuzzy clustering analysis are as follows: establishing data matrix; standardizing data; establishing fuzzy similarity matrix; transforming similarity relation into equiv
Subtractive-Clustering-Algorithm-master
- 能够实现减法聚类,通过减法聚类对数据进行分类,使用python编程(It can realize subtraction clustering and use Python Programming)
基于t-SNE降维的学生成绩聚类模型
- 使用Python编写的小程序代码,基于t-SNE降维的学生成绩聚类模型。(Clustering model of students' performance based on t-sne dimension reduction)
kmeans聚类源码
- kmeans聚类python代码,里面有详细注解,可直接运行
聚类算法的课件和编程源码
- 聚类算法的课件和基于Python的编程源码,聚类有很多方法,这里列举了常见的几种,并附上基于Python的代码