搜索资源列表
msc.rar
- 多元散射校正算法,用于近红外散射数据处理,增强信噪比,function [Xcorrect]=msc(X,Xref) msc pretreate the samples X with the Multiplicative Scatter Correct Input X:the matrix of the sample spectra to be Correct Xref:the matrix of the sample spectra
ar_dlda
- 在ar人脸库上实现Direct Fisher discriminant analysis,该方法首先对类内散布矩阵对角化,然后对类间散布矩阵对角化,使类间散布矩阵对角化的矩阵即使鉴别向量集-In the ar face database to achieve Direct Fisher discriminant analysis, this method first within-class scatter matrix diagonalization, and then between-cla
lda
- 对有类别监督的数据进行先行判别分析用于降维 数据为结构体类型,返回数据也是降维后的结构体类型。如(a.X a.y)a.X是带有类别的数据,a.y是类别信息-Synopsis: model = lda(data) model = lda(data,new_dim) Descr iption: This function is implementation of Linear Discriminant Analysis. The goal
[7---2002]-Solving-the-small-sample-size-problem-
- The small sample size problem is often encountered in pattern recognition. It results in the singularity of the within-class scatter matrix S,? in Linear Discriminant Analysis (LDA). Dijjrent methods have been proposed la solve this problem in face
feature_select
- 通过类间离散度矩阵和类内离散度矩阵,对给定数据进行特征提取。-Between-class scatter matrix and within-class dispersion matrix, the data given for feature extraction.
Mie3Plot
- 计算各种波长、介电常数的粒子的散射相矩阵、反射率、不对称因子的有力工具- calculate various wavelength,scatter phase matrix
Two-dimensional-random-number
- 学习采用Matlab程序产生正态分布的二维随机数 估计类均值向量和协方差矩阵的方法 类间离散度矩阵、类内离散度矩阵的计算方法-Learning using Matlab program to generate two-dimensional normal distribution random number estimated class mean vector and covariance matrix method class scatter matrix calculation metho
shiyan123
- 估计类均值向量和协方差矩阵的方法。 类间离散度矩阵、类内离散度矩阵的计算方法 -Estimated class mean vector and covariance matrix method. Between-class scatter matrix, within-class dispersion matrix calculation method
Matlab-graphics-classic-case
- matlab经典绘图案例。包括三维曲面z=x^2+y^2的动画、正弦曲线的动画、切片图、向量图、三维彗星图、三角形网格图、三角形表面图、球面、等值线图、三维瀑布图、三维火柴杆图、三维散点图、柱形图、三维条形图、三维饼图、带形图、曲线图、高斯分布函数的曲面图、高斯分布函数的网格图、5阶高斯分布矩阵、梯度场矢量图、罗盘图、玫瑰花图、羽列图、数据向量的单轴对数坐标图、矩阵的条形图 矩阵的面积图、二维饼图、散点图、误差图、火柴杆图和碗状曲面图等等。 -Drawing matlab classic
fisher
- 模式识别的经典算法,它是在1996年由Belhumeur引入模式识别和人工智能领域的。性鉴别分析的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳的可分离性。因此,它是一种有效的特征抽取方法。使用这种方法能够使投影后模式样本的类间散布矩阵最大,并且同时类内散布矩阵最小。就是说,它能够保证投影后模式样本在新的空间中有最小的类内距离和最大的类间距离,即模式在该空间中有最
test
- 绘制二维密度散点图,根据x,y的最大最小值将坐标分成若干小格,然后统计落在每个小格里的点数,最后形成的就是一个矩阵,然后直接出图-Drawing two-dimensional density scatter plot, according to the x, y minimum and maximum values of the coordinates into a number of small cells, then every little statistic
GideonT
- 输入数据可生成散点矩阵,并做多元线性分析-generation of scatter matrix, and conducting multiple linear regression analysis
measure
- 用于测量随机散射介质光学传输矩阵TM 直接运行主函数即可 注意相机型号:MT9F002 SLM型号:RL-SLM-R2-Used to measure the transmission matrix of random scatter medium(TM).Run the main directly camear:MT9F002 SLM:RL-SLM-R2
bin
- 求散点到中心点的距离,包括矩阵的变换等等,在中心点已知的情况下求出十个最短的距离(Scatter the distance from the center to the center, including the transformation of the matrix, etc., and find the ten shortest distances in the case where the center is known)
bayer抖动算法
- 抖动算法分为随机抖动算法和有序抖动算法。随机抖动算法随机产生一组模板方阵数列,随机数的产生期间在图像的最小灰度和最大灰度之间。有序抖动算法是人为地设置一些模板值进行匹配操作,主要有分散性抖动算法(Disperse Dither)和聚集型离散算法(cluster Dith神两种。分散型以Bayer有序抖动算法为代表。后来Ulichenay在以上两种算法的基础上,提出了局部聚集整体分散的抖动算法。(Dithering algorithm is divided into random ditherin
57898
- 标准化数据,可以用来进行Bland-Altman and correlation 以及画图(This customizable data analysis tools generates a Bland-Altman and correlation scatter plot. Data can be displayed using color and shape coding of groups using a 2D or 3D matrix notation. Data points can