搜索资源列表
HOG 人体检测的源代码
- HOG 特征向量的计算 用于SVM分类
HOG-LBP-detection
- 该程序分别提取正负样本图像的HOG和LBP特征,利用支持向量机进行样本训练,得到行人分类器。利用训练好的分类器进行检测,实验结果表明,该方法可以有效检测出图像中的行人,并达到了较好的检测结果。-A novel approach based on combining Histogram of oriented gradients (HOG) and LocalBinary Pattern(LBP) is suggested in the program.Also liner SVM is acte
An-HOG-LBP-Human-Detector
- 一种基于HOG-LBP特征的人脸检测方法,对于遮挡的人体非常有效。-By combining Histograms of Oriented Gradients (HOG) and Local Binary Pattern (LBP) as the feature set, we pro- pose a novel human detection approach capable of handling partial occlusion. Two kinds of detectors
CKPCA-HOG-SVM
- 为了准确地对监控场景中的运动目标进行语义上的分类,提出了一种基于聚类的核主成分分析梯度方向直方图和二又决策树支持向量机的运动目标分类算法。-In order to accurately monitor the movement of scene targets semantic classification, the clustering based on kernel principal component analysis of gradient direction histograms,
learcode
- 行人检测源程序,居于svm技术。和梯度直方图提取-Pedestrian Detection source, living in SVM technology. And gradient histogram extraction
hog
- Hog try I try to implement hog descr iptor
objectdet20070707
- cvpr07年 对象检测代码 hog+svm,压缩包里含有行人,车辆等分类器,可以直接检测-cvpr07 on object identification code hog+ svm, compression bag with pedestrians, vehicles and other classifiers
Blog_hogCompute6.tar
- Opencv HOG (Histogram of Orientation Gradient) training based on Dalal method. When you try to use Opencv HOG, you may not know how the training of the SVM model is done. Here is the example Linux with Opencv2.1
exercise5
- Matlab HOG exercise matlab svm learning
hog_svm
- matlab实现hog+svm图像二分类(Matlab implementation of hog and svm images two categories)
HOG
- 求取任意图片的HOG特征,一共提取360个梯度特征,可用于ADABoost,SVM中。(Seek the HOG feature of any picture)
利用Hog特征和SVM分类器进行行人检测
- 利用Hog特征和SVM分类器进行行人检测(Using Hog features and SVM classifiers for pedestrian detection)
HOG
- 将这330个3780维的HOG特征当做测试样本,用支持向量机(SVM)分类器来判别出,这些窗口的HOG特征是否有行人,有行人的用矩形框标记起来。HOG行人特征及所对应的SVM分类器的参数,在opencv中已经训练好了,我们只需要得到HOG特征,然后调用SVM即可得到判别结果(The 330 Hera features of 3780 dimensions are used as test samples, and the support vector machine (SVM) classifi
svm
- 使用hog特征进行分类,采用opencv里的svm算法(By using the hog feature,we classfy the face images with svm algorithm.)
SVM
- 通过HOG获取特征,用SVM对图像进行分类。(The feature is acquired by HOG, and the image is classified by SVM.)
训练Hog以及检测
- 对行人图片提取hog数据量然后对其检测 用svm数据分类(The data of hog data is extracted and then classified by SVM data)
SVM
- 使用HOG提取特征,SVM进行图像分类,可以进行两种以上分类(Using HOG to extract features and SVM for image classification)
hog-feature
- 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主(The Histogram
svm
- 基于hog特征的svm的图像分类识别,matlab程序(Image classification and recognition based on hog-svm)
HOG-SVM-classifer-master
- 利用传统的SVM-HOG算法,进行行人检测(HOG-SVM algorithm for pedestrian detection)