搜索资源列表
DGPSO.rar
- 用于求解约束优化问题的算法,算法为差分进化/遗传算法/微粒群算法的融合。对于“[7] T. P. Runarsson and X. Yao, Stochastic ranking for constrained evolutionary optimization, IEEE Trans. Evol. Comput., vol. 4, no. 3, pp. 284-294, Sep. 2000”中给出的13个标准测试函数,均能得到问题最优解。如有任何疑问,请于http://2shi.phphube
PSOtoolbox.rar
- 微粒群算法[PSO ] 是由Kennedy 和Eberhart等于1995 年开发的一种演化计算技术, 来源于对鸟群捕食过程的模拟。PSO同遗传算法类似,是一种基于叠代的优化工具,但与遗传算法使用遗传操作子进行优化不同,利用群体中各个体之间的“协作”与“竞争”关系,根据自身及其竞争者的飞行经验,调整自己的行为。同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域。,Particle Swarm Opt
GAPSO.rar
- 遗传粒子群的最新改进算法,随着维度增加效果更好,Genetic Particle Swarm latest improved algorithm, with the increasing dimensions better
algorithms
- 我个人收集的各类智能算法,共有20多个源代码,包括:遗传算法,蚁群算法,粒子群算法,微分进化算法,遗传神经网络算法,粒子群SVM算法,粒子群神经网络算法等混合算法-I collect all kinds of intelligent algorithms, a total of more than 20 source code, including: genetic algorithms, ant colony optimization, particle swarm optimization,
PSOGARBF
- 基本粒子群优化算法 遗传算法,基于聚类,梯度,最小二乘法的RBF网络程序等5个代码-Elementary particle swarm optimization algorithm genetic algorithm, based on clustering, gradient, least-squares method of RBF network program such as 5 code
PSO
- 粒子群算法滤波器,用粒子群算法实现了LP滤波器-Particle swarm algorithm filter, particle swarm algorithm with the LP filter
my_pso
- 将粒子群算法与免疫结合,计算函数的优化极值。-The particle swarm optimization combined with the immune calculated extremal function optimization.
Optimizers
- 一系列好用的用户友好的启发式优化算法,包括非自适应算法,基于模拟退火算法的种群算法,基本遗传算法,差分进化算法以及粒子群优化算法。此外,也包括神圣算法,它利用了所有这些优化算子,虽然有时交换种群之间的不同算法。-A nice set of user-friendly heuristic optimizers. Included are a non-adaptive, population based Simulated Annealing algorithm, a basic Genetic A
selest
- 关于一些算法中如何生成新成员的选择方法,粒子群算法,遗传算法等算法可以用。-How about some algorithm to generate a new member of the selection method, particle swarm optimization, genetic algorithms and other algorithms can be used.
PSO_GA_RBF
- 粒子群算法、遗传算法优化RBF径向基神经网络。-Particle swarm optimization, genetic algorithm optimization of RBF Radial Basis Function Neural Networks.
vcpso
- 利用vc++编程调用ansys对模型进行修正.使用的是带遗传算法的粒子群优化算法.-Using vc++ programming model called the amendment ansys. Using a genetic algorithm with particle swarm optimization algorithm.
GPSOtsp
- 采用遗传微粒群算法(GPSO)求解旅行商问题(TSP)的源代码。内附多个算例,本算法对于中小规模问题求解效率很高,对于大规模问题则效率略低。如有任何疑问,请于http://2shi.phphubei.com.cn/index.php发帖询问。-Genetic Particle Swarm Optimization (GPSO) for Traveling Salesman Problem (TSP) of the source code. Containing a number of examp
MOEA-NSGA-II
- genetic algorithm, simulated annealing, singleobjective, particle swarm optimi..., optimization, classes
java_evolutionary_algorithms
- 用Java实现的进化算法包。包括遗传算法、粒子群算法、memetic算法和进化策略算法。-evolutionary-algorithm Evolutionary Algorithm package implemented using Java. The package serves as a foundation class library, supporting the implementation many variants of Evolutionary Algorith
GODLIKE
- 遗传算法与模拟退火,粒子群算法的结合与比较实验.稍微修改就可以学习应用-Genetic algorithms and simulated annealing, particle swarm optimization algorithm and comparison with experiment. A slight modification can learn the application of
PSO
- matlab 遗传算法GA,粒子群算法PSO,蚁群算法AS 前段时间上智能计算方法实验课上,自己做的程序。帖到这里,希望有人能改进它们,交流经验这样更有价值。 遗传算法解决最小生成树问题,PURFER编码。 粒子群算法做无约束最优化问题。 蚁群算法解决TSP问题。 如果有宝贵经验希望能交流一下,谢谢,-matlab genetic algorithm GA, particle swarm optimization PSO, ant colony algorithm f
pso
- This an implementation of Particle Swarm Optimization algorithm using the same syntax as the Genetic Algorithm Toolbox, with some additional options specific to PSO. Allows code-reusability when trying different population-based optimization al
PIDcontrowithAOC
- 除了蚁群算法,可用于PID参数优化的智能算法还有很多,比如遗传算法、模拟退火算法、粒子群算法、人工鱼群算法,等等。-In addition to ant colony algorithm can be used to optimize the PID parameters there are many intelligent algorithms, such as genetic algorithms, simulated annealing algorithm, particle swarm
particle-swarm--genetic-algorithm
- matlab程序(粒子群,遗传算法,牛顿迭代)-matlab program (particle swarm, genetic algorithm, Newton iteration)
nichingparticle-swarm-optimization
- 粒子群优化算起源于对鸟群、鱼群以及对某些社会行为的模拟,是一种基于群体智能的进化计算技术。而小生境技术则起源于遗传算法,这种方法能使基于群体的随机优化算法形成物种,从而使相应的优化算法具有发现多个最优解的能力。而多分类器集成技术则是通过多个分类器进行某种组合来决定最终的分类,以取得比单个分类器更好的性能。多分类器集成技术要求基元分类器不仅个体性能要好并且其差异度要大,这与小生境技术形成物种的能力具有很多内在的相似性。目前己经有研究者将小生境技术应用于多分类器集成,但由于传统的小生境技术仍然不完善