搜索资源列表
bipso
- 围绕粒子群的当前质心对粒子群重新初始化.这样,每个粒子在随后的迭代中将在新的位置带着粒子在上次搜索中获得的“运动惯性”(wvi)向Pi,Pg的方向前进,从而可以在粒子群的运动过程中获得新的位置,增加求得更优解的机会.随着迭代的继续,经过变异的粒子群又将趋向于同一点,当粒子群收敛到一定程度时又进行下一次变异,如此反复,直到迭代结束.-particle swarm around the center of mass of the current PSO reinitialization. Thus,
01716354_09007dcc8030db7f
- Design of Optimal PI Controllers for Doubly Fed Induction Generators Driven by Wind Turbines Using Particle Swarm Optimization
pi_pso
- Using ITSE as objective function tuning of PI controller using Particle Swarm Optimization technique
PSO
- 用粒子群算法整定PI型广义预测控制器中的两个参数-Particle swarm optimization with tuning PI generalized predictive controller two parameters
particle-swarm-optimization
- 利用粒子群优化算法寻找下列多元函数的最大值:f(x, y) = x*cos(2*pi*y) + y*sin (2*pi*x) -2≤x≤2,-2≤y≤2 要求输出最优解、最优解对应的x和y值,以及粒子群优化算法迭代过程中的适应度函数进 化曲线。-Maximum use of particle swarm optimization algorithm to find the following multivariate function: f (x, y) = x*
psoSVM
- 粒子群算法入门必备,超详细。 在全局版的标准粒子群算法中,每个粒子的速度的更新是根据两个因素来变化的,这两个因素是:1. 粒子自己历史最优值pi。2. 粒子群体的全局最优值pg。如果改变粒子速度更新公式,让每个粒子的速度的更新根据以下两个因素更新,A. 粒子自己历史最优值pi。B. 粒子邻域内粒子的最优值pnk。其余保持跟全局版的标准粒子群算法一样,这个算法就变为局部版的粒子群算法。(The introduction of particle swarm algorithm is essent
23876123psoSVM
- 在全局版的标准粒子群算法中,每个粒子的速度的更新是根据两个因素来变化的,这两个因素是:1. 粒子自己历史最优值pi。2. 粒子群体的全局最优值pg。如果改变粒子速度更新公式,让每个粒子的速度的更新根据以下两个因素更新,A. 粒子自己历史最优值pi。B. 粒子邻域内粒子的最优值pnk。其余保持跟全局版的标准粒子群算法一样,这个算法就变为局部版的粒子群算法。(The introduction of particle swarm algorithm is essential, super detai