搜索资源列表
fastfixedpoint
- 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离出相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信和医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。 本文简要的阐述了ICA的发展、应用和现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它
rengongzhineng
- 人工神经网络在传感器静态特性拟合中的应用-AI of computer
shenjingwangl
- 利用神经网络对多传感器数据进行融合,最后求得仿真数据,并与真实数据对比,给定了权值等。(The neural network is used to fuse the multi-sensor data. Finally, the wind direction of the simulated wind speed is obtained, and the wind direction is compared with the true wind direction, and the weight
神经网络两个例题
- Rosenblatt传感器的神经网络模型(Neural network model of Rosenblatt sensor)
故障诊断与容错控制课程设计报告
- 针对滚动轴承这种非平稳振动信号采用的小波包分解的方法来检测故障的存在,运用神经网络来实现故障的分类,还结合D-S理论融合了多个传感器的诊断结果,提高了故障诊断的准确性并通过实验仿真证实。(This course's job is to use the wavelet packet decomposition method for non-stationary vibration signals of rolling bearings to detect the presence of fault