搜索资源列表
support_vector_machine
- C针对模式识别问题H描述了支持向量机的基本思想H着重讨论了OD=?PI最小二乘=?PI加权=?P 和直接 =?P 等新的支持向量机方法H用于降低训练时间和减少计算复杂性的海量样本数据训练算法分块法I分解法H提 高泛化能力的模型选择方法H以及逐一鉴别法I一一区分法IPD., 分类法I一次性求解等多类别分类方法@最后给 出了污水生化处理过程运行状态监控的多类别分类实例@作为结构风险最小化准则的具体实现H支持向量机具有 全局最优性和较好的泛化能力
kunling
- 用谱方法计算流体力学一些流动现象的整体稳定性,采用加权网络中节点强度和权重都是幂率分布的模型,最小二乘回归分析算法。- Spectral methods of computational fluid dynamics flow of some of the overall stability of the phenomenon, Using weighted model nodes in the network strength and weight are power law distribu
liepie_v60
- 最小二乘回归分析算法,采用加权网络中节点强度和权重都是幂率分布的模型,感应双馈发电机系统的仿真。- Least-squares regression analysis algorithm, Using weighted model nodes in the network strength and weight are power law distribution, Simulation of doubly fed induction generator system.
2WLS-TDOA-Source-Location
- 基于两步加权最小二乘的多站时差辐射源定位算法-Two-stage weighted least squares source location
ganbao_v85
- 采用加权网络中节点强度和权重都是幂率分布的模型,最小二乘回归分析算法,有CDF三角函数曲线/三维曲线图。- Using weighted model nodes in the network strength and weight are power law distribution, Least-squares regression analysis algorithm, There CDF trigonometric curve/3D graphs.
junqing
- 最小二乘回归分析算法,计算时间和二维直方图,直线阵采用切比学夫加权控制主旁瓣比。- Least-squares regression analysis algorithm, Computing time and two-dimensional histogram, Linear array using cut than learning laid upon the right control of the main sidelobe ratio.
tiejeng_v19
- 相控阵天线的方向图(切比雪夫加权),最小二乘回归分析算法,分数阶傅里叶变换计算方面。- Phased array antenna pattern (Chebyshev weights), Least-squares regression analysis algorithm, Fractional Fourier transform computing.
zuixiaoerchengyichuansuanfa
- 基本最小二乘和加权最小二乘算法程序(包括一次完成算法和递推算法)-Basic least squares and weighted least squares algorithm (including one-time completion algorithm and recursive algorithm)
abpxi
- 直线阵采用切比学夫加权控制主旁瓣比,最小二乘回归分析算法,分形维数计算的毯子算法matlab代码。- Linear array using cut than learning laid upon the right control of the main sidelobe ratio, Least-squares regression analysis algorithm, Fractal dimension calculation algorithm matlab code blankets.
SS
- 加权质心定位算法(zhixin.m)、最小均方误差的二维定位算法(LSM2.m)、最小均方误差的三维定位算法(LSM3.m)、最小二乘/极大似然用于目标跟踪(MLS1.m)、最小二乘/极大似然用于纯方位目标跟踪(MLS2.m)(Weighted centroid positioning algorithm)
DeconvolutionCode-LevinEtAl07
- 所附代码提供了上述三种反卷积策略的实现。要开始,用户应该检查文件demo.m。反褶积子程序在以下文件中实现:deconvL2频率.m:在频域反褶积,假设高斯导数在前面。2.deconvL2.m:利用共轭梯度算法,假设在空间域上存在高斯导数先验的反褶积。3.deconvSps.m:利用迭代重加权最小二乘算法,在空间域上假设一个稀疏导数先验的反褶积。(The enclosed code provides the implementation of the above three deconvolut