搜索资源列表
waveletdocument
- 一些很有用的小波包多尺度分解与重构的资料
waveletpictureprocessing
- 本文是关于小波分析在图像处理压缩方面的应用,是word格式的,文档中有详细的程序和文字分析说明,对学习的人很有帮助。 在小波方法的实际应用中,可以利用尺度方程系数构造得到小波和小波包变换算法即金字塔算法。利用张量积方法可以从一维多分辨分析直接得到二维的多分辨分析,从而方便地构造得到二维小波和小波包以及相应的分解和合成算法。在图象处理和二维数据分析研究中广泛使用的就是二维形式的小波和小波包算法。
eemd
- EEMD是针对EMD方法的不足,提出了一种噪声辅助数据分析方法。EEMD分解原理为:当附加的白噪声均匀分布在整个时频空间时,该时频空间就由滤波器组分割成的不同尺度成分组成。--EEMD is insufficient for the EMD method, we propose a noise-assisted data analysis methods. EEMD decomposition principle is: when the additional white noise unifo
dwt2wavedec2
- 图像的二维离散小波单尺度和多尺度地分解,读入自己的图像,直接可以轻松运行并查看分解及其图像的重构结果。-Two-dimensional Discrete Wavelet Image single-scale and multi-scale decomposition, reading into its own image, can easily run directly and view the image decomposition and reconstruction of the resu
wavelwts_transform
- 用下面的程序产生并显示与小波db4相关联的四个滤波器组.小波函数db4的迭代生成过程.单尺度一维离散小波分解与重构-With the following procedures and display associated with the db4 wavelet filter banks of four. Db4 wavelet function to generate the iterative process. Single-scale one-dimensional discrete wa
emd
- 经验模式分解(EMD)将信号分解成多个IMF分量,每个IMF分量代表一定频率尺度的模式完整源代码-Empirical Mode Decomposition (EMD) to decompose the signal into a number of IMF components, each component of IMF on behalf of a certain frequency-scale model of the full source code
yy1
- 利用小波分解分析信号的时频特性 包含但尺度小波分解和多尺度小波分解-When using wavelet decomposition analysis signal frequency characteristics include scale wavelet decomposition and multi-scale wavelet decomposition
emd
- 经验模态分解方法简称EMD方法。该方法从本质上讲是对一个信号进行平稳化处理,其结果是将信号中真实存在的不同尺度波动或趋势逐级分解开来,产生一系列具有不同特征尺度的数据序列。-Empirical mode decomposition method is referred to as the EMD method. This method is in essence a signal smoothing processing, the result is the real signal differ
package_emd
- 经验模态分解代码,依据数据自身的时间尺度特征来进行信号分解,无须预先设定任何基函数。-Empirical mode decomposition code, based on the data of their characteristic time scale for signal decomposition, no need of any of a set of basis function.
eemd
- 经验模态分解(Empirical Mode Decomposition, EMD)方法是由美国NASA的黄锷博士提出的一种信号分析方法。它依据数据自身的时间尺度特征来进行信号分解,无须预先设定任何基函数。EMD方法在理论上可以应用于任何类型的信号的分解,因而在处理非平稳及非线性信号序列上具有很高的信噪比,体现出非常明显的优势。-Empirical Mode Decomposition (EMD) is a signal analysis method proposed by the U.S. N
matlabxiaobobianhuan
- 小波变换,包括单尺度分解 多尺度分解 小波包分解及重构 小波分解重构精简-Wavelet transform, including single-scale decomposition multiscale decomposition wavelet packet decomposition and reconstruction of wavelet decomposition and reconstruction streamline
DWT
- 此代码为多分辨率小波变换,可对原始信号进行多尺度分解-This code for multi-resolution wavelet transform, the original signal can be multi-scale decomposition
matlabxiaobobianhuan
- 该程序中包含了小波包分解和重构程序、单尺度分解、多尺度分解等,还有一些试验数据,对初学者有很大的帮助。-The program includes a wavelet packet decomposition and reconstruction program, a single scale decomposition, multiscale decomposition, there are some experimental data, for beginners is a great hel
xujiayshangchuan
- 经验模态分解(Empirical Mode Decomposition,简称EMD)法是美籍华人N. E. Huang等人于1998年提出的,适合于分析非线性、非平稳信号序列,具有很高的信噪比。该方法的关键是经验模式分解,它能使复杂信号分解为有限个本征模函数(Intrinsic Mode Function,简称IMF),所分解出来的各IMF分量包含了原信号的不同时间尺度的局部特征信号。-Empirical Mode Decomposition method (Empirical Mode Dec
小波分解+MSE熵+特征提取
- 通过小波四层分解,获取脑电信号的四个波形,之后运用多变量多尺度熵计算综合MMSE,为脑电信号识别做基础(After four layers of wavelet decomposition, four waveforms of EEG signals are acquired, and then the MMSE is calculated by using multivariable and multi-scale entropy, which is the basis of EEG reco
数学形态学与小波变换
- 小波分解可以使人们在任意尺度观察信号,只需所采用的小波函数的尺度合适。小波分解将信号分解为近似分量和细节分量,它们在应用中分别有不同的特点。比如,对含有噪声的信号,噪声分量的主要能量集中在小波分解的细节分量中,对细节分量做进一步处理,比如阈值处理,可以过滤噪声。(Wavelet decomposition allows people to observe signals at any scale, just the size of the wavelet function is appropri
Desktop
- 图像金字塔分解与图像金字塔重构matlab 程序,实现图像多尺度变换,对图像进行增强(Image pyramid decomposition and reconstruction of image pyramid matlab program,achieveing image enhancement)
ITD
- 一个信号有固有时间尺度分解后,进行重构,得到有用信号,适用于信号处理。(After a signal has inherent time scale decomposition, it is reconstructed and useful signal is obtained, which is suitable for signal processing.)
LCD
- 局部特征尺度分解程序,包含一个分析直流同步电机启动电流的案例及其数据,数据格式在zzce.m中。(local decompostion is similar to EMD and LMD)
LMD
- 是由Smith提出的一种新的非线性和非平稳信号分析方法。由于LMD是依据信号本身的信息进行自适应分解的,产生的PF分量具有真实的物理意义,由此得到的时频分布能够清晰准确地反映出信号能量在空间各尺度上的分布规律。(It is a new nonlinear and non-stationary signal analysis method proposed by Smith. Because LMD decomposes the signal itself adaptively, the PF c