搜索资源列表
power-flow
- 电网内的多个风电场风速往往因为其地理位置的远近而有着不同程度的相关性,采用Nataf 逆变换技术即可建立不同风电场之间具有相关性的风速分布样本空间,进而得到具有相关性的风 电场出力。在仿真过程中考虑风速的不确定性,将每个风电场出力视为一个负的满足威布尔随机 分布的负荷,根据历史数据,用方差—协方差矩阵描述不同风电场相关系数,建立最优潮流模型。 最后,在风电接入改进IEEE 30及IEEE 118节点系统中应用蒙特卡洛仿真计算,定量研究随着风 电场之间相关性的增强,最优潮流结果
分布式电源选址定容的多目标优化算法_夏澍
- 多目标粒子群算法优化分布式发电选址 实现了最优目标,包含了分布式电源的出力模型(Related papers on location and sizing of distributed generation)
case
- 考虑网络约束、天然气节点约束、潮流约束的电-气耦合互补系统的最优出力情况(optimal dispatch of electricity-gas system)
micro-grid based on CSO
- 本文分析微网中微电源包括光伏发电、风力发电、微燃机、柴油发电机和燃料电池的电气特性,构建微电网优化运行的模型,以微网的经济成本和环境成本最小为目标函数,充分考虑了电压越限、功率平衡、微电源出力限制等约束条件,应用鸡群算法进行求解。 解决了粒子群算法易早熟、易陷入局部最优解的问题。并通过典型的微网系统进行仿真分析,仿真结果验证了该算法的有效性。(In this paper, the electrical characteristics of micro-power sources in micro