搜索资源列表
tigongyuanma
- 该文件包共有5个文件 TSP--传统算法---说明TSP的传统算法实践 背包问题----0-1背包问题的传统算法实践 模拟退火算法----模拟退火算法实现TSP问题 我的通讯录----我整理写的个人通讯录 遗传算法----遗传算法解决TSP问题
Chp15
- 背包问题的遗传算法解法 背包问题的遗传算法解法-knapsack problem genetic algorithm method knap sack problem GA knapsack asked Solution that the genetic algorithm method knapsack problem Genetic Algorithm Solution
knapGa
- 用C#开发的用遗传算法求解0-1背包问题的源代码。-C# development of the genetic algorithm 0-1 knapsack problem's source code.
bag-value
- 遗传算法解决背包问题,对于大量背包问题可以迅速得到一个良好的数据。
bag
- C++实现的,遗传算法解决背包问题,很经典-C++ implementation of genetic algorithm to solve knapsack problem, it is classic
GA
- 本程序是在MATLAB平台上,利用智能优化算法遗传算法来解决01背包问题。在0 / 1背包问题中,需对容量为c 的背包进行装载。从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高。-This procedure is in the MATLAB platform using intelligent genetic algorithm optimization algorithm t
KnapsackProblem
- 基本遗传算法带最优保存思想的背包问题,其中,目标值那段代码使用的是惩罚函数法,选择是概率选择,交叉是双点随机交叉,变异是概率变异-The basic genetic algorithm with elitist thinking knapsack problem, which is a target that part of the code using penalty function method, choice is the probability of selection, crosso
backpack
- 用C#来实现遗传算法中的背包问题。其中只有变异过程。-Using C# to implement the genetic algorithm knapsack problem. Only mutation process.
TSP_GA_10Cities_New
- 遗传算法解10个城市的背包问题,独立新开发源码(nxn matrix for city distances)- The Traveling Salesman Problem:A Case Study in Optimization via Genetic Algorithms (nxn matrix for city distances)
KGaBinnn
- 遗传算法解决复杂背包问题,用Java编写。该背包拥有3个属性,500个东西,50个包包。求解包与包之间物品重量差最小,并且同一个背包的物品属性有特殊要求。该程序容易修改。 -Genetic algorithms to solve complex knapsack problem, written in Java. The backpack has three properties, 500 things, 50 bags. Solving package and package goods
fenzhi
- 有关于算法设计的,用C++实现的遗传算法求解背包问题-Genetic algorithm is presented to solve knapsack problem
knapsack
- 利用遗传算法解决0-1背包问题的c++程序代码-Genetic algorithm to solve the knapsack problem c++ program
knapsack
- VB背包问题遗传算法求解的源码实例,有兴趣的可以下载。-VB knapsack problem genetic algorithm source code examples, are interested in can be downloaded.
NP-hard-problem
- matlab模拟退火算法,处理背包问题,相比较与遗传算法模拟退火原理简单,编译容易-matlab simulated annealing algorithm to handle the knapsack problem, compared with the genetic simulated annealing algorithm is simple, easy to compile
ACO_GA_PSO
- 用三种方法解决城市距离问题(或背包问题)。三种方法分别为:遗传算法,蚁群算法,粒子算法。-Three ways to solve the problem of urban distance (or knapsack problem). Three methods are: genetic algorithm, ant colony algorithm, particle algorithm.
ga
- maltab j求解背包问题 遗传算法-maltab 0-1bag gasuanfa
背包问题
- 算法效果较为良好,实现背包问题价值最大,采用遗传算法实现的比较不错的结果(The algorithm effect is good, the maximum value of the knapsack problem, genetic algorithm is used to achieve good results)
遗传算法01背包问题
- 使用遗传算法解决01背包问题,并输出得到最大价值的遗传代数以及每一代的最大价值(Using genetic algorithm to solve 01 knapsack problem)
matlab程序(解决0-1背包问题)
- 使用遗传算法解决0-1背包问题,调试成功,非常适合初学者了解遗传算法和0-1背包问题(Using genetic algorithm to solve 0-1 knapsack problem, debugging is successful. It is very suitable for beginners to understand genetic algorithm and 0-1 knapsack problem.)
NSGA2解决0-1背包问题
- 用遗传算法解决背包问题,供大家参考交流。。。(Using genetic algorithm to solve the knapsack problem, for your reference and exchange...)