搜索资源列表
数据降维
- 数据降维方法
mani.rar
- 一个集成了8种降维方法的GUI(包括常见的PCA、LLE、isomap、HLLE等线性与非线性将为方法),An integrated eight kinds of dimensionality reduction methods GUI (including common PCA, LLE, isomap, HLLE, etc. will be linear and nonlinear methods)
drtoolbox
- 流形学习的基本方法,用于高维数据的降维,包含几乎所有的流形方法(The basic method of manifold learning, used for dimensionality reduction of high-dimensional data, contains almost all manifold methods)
LLE
- lle降维,可以参考非线性降维的方法,感觉没lda好用,比pca还行(LLE dimension reduction)
各种算法
- 数据挖掘的各种经典算法,有数据降维、数据预处理等等(Data mining of various classic algorithms, data dimensionality reduction, data preprocessing and so on)
一维径向流程序
- 计算一维径向流的压力分布,产能计算,并形成最终可以直观观察的压降漏斗(Calculate the pressure distribution of one-dimensional radial flow, calculate the deliverability, and form the pressure drop funnel which can be observed visually)
PCA实现特征降维
- pca和_fase_pca实现特征降维,两种算法都有所改进,特别是pca可以根据自己的需要进行相应的改进,代码清晰易懂,希望对你有帮助。(PCA and _fase_pca to achieve feature reduction, the two algorithms have improved, especially PCA can be improved according to their needs, the code is clear and easy to understand,
synthetic_data
- 实现LLE降维的一种改进方法,并通过文件中的五组数据来说明(LLE dimension reduction)
降维与特征选择
- 在machine learning中,特征降维和特征选择是两个常见的概念,在应用machine learning来解决问题的论文中经常会出现。 对于这两个概念,很多初学者可能不是很清楚他们的区别。很多人都以为特征降维和特征选择的目的都是使数据的维数降低,所以以为它们是一样的,曾经我也这么以为,这个概念上的误区也就导致了我后面对问题的认识不够深入。后来得到老师的指点才彻底搞清楚了两者的关系,现总结出来与大家分享。(Feature reduction and feature sele
My_PAA
- 很好用的降维程序,下载后就能用适用于各类信号(A very good dimensionality reduction program)
PCA
- 用matlab自带的PCA算法对图像进行降维(Dimensionality reduction for images)
pca
- 大数据降维方法,具体的处理了图像等,包括数据的冗余部分,利用PCA技术快速降维。(Large data dimensionality reduction method.Specifically dealing with images, including redundant parts of data, and using PCA technology to reduce dimensionality rapidly.)
3DT
- 对杂波频谱进行了仿真,并对最优STAP和降维3dt算法的改善因子进行了对比(The clutter spectrum is simulated, and the improvement factors of the optimal STAP and the dimension reduction 3DT algorithm are compared.)
降维程序
- 完成多维数据的降维工作简化数据以便更好地完成工作(The dimension reduction of multidimensional data is completed, and data is simplified, so as to better finish the work.)
87361055LaplacianEigenmapSwissRoll
- 对高维数据进行降维,可以方便大家利用时间。(Dimensionality reduction for high dimensional data)
空时自适应处理
- 仿真空时自适应处理STAP里的算法合集程序:Capon谱、降维算法3dt、JDL等(Algorithms aggregator for simulation space-time adaptive processing in STAP: Capon spectrum, dimension reduction algorithm 3dt, JDL, etc.)
3DT算法
- 该程序仿真了空时自适应处理STAP里的降维算法3dt,并与最优空时处理的结果进行了比较(This program simulates the space-time adaptive processing of the reduced-dimensional algorithm 3dt in STAP and compares the results with the optimal space-time processing.)
pca
- 应用于数据降维的一种MATLAB程序,可以实现从高维到低维的降解(A matlab program applied to data dimensionality reduction can realize the degradation from high dimension to low dimension)
基于t-SNE降维的学生成绩聚类模型
- 使用Python编写的小程序代码,基于t-SNE降维的学生成绩聚类模型。(Clustering model of students' performance based on t-sne dimension reduction)
主成分分析降维代码(直接调用版)
- 主成分分析降维代码,完整版,可以直接放进matlab运行。(Principal component analysis dimension reduction code, complete version, can be directly put into Matlab to run.)