搜索资源列表
matrix-
- 矩阵求逆,经典算法,全主元高斯约当法,经典源码,用途广泛-matrix inversion, classic algorithms, the main yuan Gaussian all about when France, classic source, a wide range of uses
GAUSSJ
- 用高斯-约当消去法求解A[XY]=[BI].由于消去过程是在全矩阵中选主元来进行的,故可使舍入误差对结果的影响减到最小
Gauss_yuedang
- 全选主元高斯-约当消去法,param mtxResult - Matrix对象,返回方程组的解,return bool 型,方程组求解是否成功-Select All PCA Gauss- Jordan elimination method, param mtxResult- Matrix object, return to the solution of equations, return bool type, the success of Equations
fuxishufangchengzu
- 复系数方程组的全选主元高斯-约当消去法 系数矩阵的虚部矩阵 param mtxConstImag - 常数矩阵的虚部矩阵-Complex coefficients equations PCA Gaussian Select- about when the elimination of the imaginary part of coefficient matrix matrix param mtxConstImag- constant matrix the imaginary part
gauss_joud
- 本程序实现了在数值分析中矩阵的高斯——约当算法-This procedure has in the numerical analysis of the Gaussian matrix- about when the algorithm
VisualC
- 全主元高斯-约当(Gauss-Jordan)消去法-PCA-wide Gauss- Jordan (Gauss-Jordan) elimination method
include
- 用全选主元高斯约当消去法求N阶复矩阵的逆矩阵其中A=AR+JAI-Select All PCA using Gauss Jordan elimination method for N-order complex matrix in which the inverse matrix A = AR+ JAI
juzhengjiuni
- 矩阵求逆,经典算法,全主元高斯约当法,使用VC++开发-Matrix inversion, the classic algorithm, the entire principal Gauss Jordan method, using VC++ development
CH1
- 1.1 全选主元高斯消去法agaus.c 1.2 全选主元高斯-约当消去法agjdn.c-1.1 Select pivot Gaussian elimination agaus.c 1.2 Select pivot Gauss- Jordan elimination agjdn.c
classical
- 线形代数方程组的求解的经典方法实现,各程序可独立运行,也可作为函数调用。主要包括高斯消去法,约当消去法等。-Linear algebraic equations for solving the classical method of implementation, the program can be run independently, but also as a function call. Includes Gaussian elimination method, Jordan elimi
inverse
- 主要内容:在visual studio上实现矩阵求逆的过程 矩阵求逆:用全选主元高斯约当消去法求n阶是矩阵A的逆矩阵A-1。其中包括矩阵求逆算法描述 -Main elements: the visual studio to achieve the process of matrix inversion matrix inversion: The Select pivot Gauss Jordan elimination order to n-order matrix A is the i
gaosiyuedangfa
- 建立网孔电流方程,使用高斯约当法求解,将结果保存在txt格式的文档中-The establishment of mesh-current equations, using Gauss Jordan Method, the results saved in txt format document
BaseMath
- C#实现的基本数值算法:利用高斯消元法求线性方程组的解、利用约当消元法求线性方程组的解、一元非线性方程实根的数值算法及程序实现-C# implementation of basic numerical algorithms: Gaussian elimination method of solution of linear equations using Jordan Elimination Method of linear equations, one dollar real roots of
Matrix-Inversion
- 实矩阵求逆的全选主元高斯-约当法,可以求取实数矩阵的逆矩阵-reduction alorithm for matrix inversion
GauseJordan
- 用高斯--约当列主元消去法求线性方程组的解-Gauss- Jordan elimination method for main-element solution of linear equations
CPP-commonly-used-algorithm
- C++常用数据集,包括“求赫申伯格矩阵全部特征值的QR方法”、"求解复系数方程组的全选主元高斯\|约当消去法"等。-C++ commonly used data sets, including " seeking Hoeschen Berg matrix QR method all eigenvalues" , " solving equations with complex coefficients Select PCA Gaussian \ | Jordan elim
Gauss_Jordan
- 计算方法 高斯约当解线性方程组 包括源码和可执行文件-Gauss- Jordan Linear Equations
gaosi
- 高斯—约当消去法解网孔电流,使用C语言,接触电路中的网孔电流。-Gauss- Jordan elimination method for solving mesh currents