搜索资源列表
Homework_191007
- 平台:VS2005 描述:这是华东师大模式识别课程的第三个Homework。用C#实现的人脸识别小程序,算法采用K阶近邻法,人脸图片来自Yale Database。上传的压缩文件里面有我的report和工程文件夹的打包。
KKNNn
- Knn算法综述、柔性KNN算法研究、一个高效的knn分类算法法、一种改进的KNN分类算法、一种优化的K最近邻协同过滤算法。 -The Knn algorithm summarized flexible KNN algorithm, an efficient knn classification algorithm method, an improved KNN classification algorithm, an optimized K nearest neighbor collabor
K_Average
- 通过k-近邻法将点分成两类,错误率较低,该方法效果挺好-Through the k- neighbor method will point is divided into two kinds, the error rate is low, the method effect is good
6
- 最近邻法和K近邻法。作为分类器算法,k近邻法和最近邻法应用广泛-Nearest neighbor and K-nearest neighbor method. As a classifier algorithm, widely k nearest neighbor method nearest neighbor method and application
iris-k-nn
- Iris 是一种鸢尾属植物。在数据记录中,每组数据包含Iris花的四种属性:萼片长度,萼片宽度,花瓣长度,和花瓣宽度,三种不同的花各有50组数据. 这样总共有150组数据或模式。这里用K近邻法进行分类。-Iris is a genus Iris. In the data recording, the data containing each of the four attributes Iris Flower: sepals length, sepal width, petal length,
NormalEsimation2
- 求点云的法向量和k近邻的求取,可以根据一些需要自己改写,自己建立工程后可以使用-about the normalesimation ,after the debug can be excute in vs
static_K_kendell_mean_var
- MATLAB代码,利用K近邻法并使用相应的特征选择对数据进行分类-MATLAB code, the use of K-nearest neighbor method and use the appropriate feature selection data classification
static_K_ga01
- MATLAB代码,采用封装法利用K近邻和遗传算法的结合对数据进行分类-MATLAB code using encapsulation method using a K-nearest neighbor and genetic algorithm combined with data classification
classification-Python
- python实现感知器、贝叶斯分类、决策树分类、K最近邻法、逻辑回归、支持向量机-Python implementation of perceptron, Bias classification, decision tree classification, K nearest neighbor method, logic regression, support vector machine
Z
- 基于k近邻估计法的非参数概率密度估计论文及源代码的如何实现-K-nearest neighbor nonparametric probability density estimation method based on the estimated
类比法
- 型的类比学习方法是K-最近邻方法,它属于懒散学习法,相比决策树等急切学习法,具有训练时间短,但分类时间长的特点。K-最近邻算法可以用于分类和聚类中(The analogy learning method is K- nearest neighbor method. It belongs to the lazy learning method. Compared with the decision tree learning method, it has the characteristics o
三步搜索法
- 本实验的目的是学习Parzen窗估计和k最近邻估计方法。在之前的模式识别研究中,我们假设概率密度函数的参数形式已知,即判别函数J(.)的参数是已知的。本节使用非参数化的方法来处理任意形式的概率分布而不必事先考虑概率密度的参数形式。在模式识别中有躲在令人感兴趣的非参数化方法,Parzen窗估计和k最近邻估计就是两种经典的估计法。(The purpose of this experiment is to study the Parzen window estimation and the k nea
occzarence
- Parzen窗和K近邻法进行概率密度估计还带一个示波器控件()
KNN_demon
- 最近邻法语k近邻法的例子,基于matlab平台,有助于初学者学习。(The recent example of the nearest neighbour approach to French K, based on the MATLAB platform, helps beginners to learn.)
k-近邻点估计点云法向量
- 利用matlab实现k-近邻点估计点云法向量求解,(Matlab is used to solve the normal vector of k-nearest neighbor point cloud.)