搜索资源列表
-
0下载:
核主元分析法能充分利用核函数来解决非线性问题,具有很好的非线性逼近能力-Kernel principal component analysis can take advantage of the kernel function to solve nonlinear problems, with good nonlinear approximation ability
-
-
1下载:
用核主成成分分析法对数据的降维,根据降维结果可选择最合适的维数-Kernel principal component analysis with the data dimension reduction method, based on the results of dimension reduction can choose the most appropriate dimensions
-
-
0下载:
基于PSO训练SVM的人脸识别利用支持向量机在学习能力方面表现的良好性能,结合核主元分析特征提取方法,将将其应用于人脸识别中,该方法在实验中表现了良好的识别性能,为人脸识别领域提供了一条新的识别途径 已通过测试。
-Good performance, performance in the ability to learn the use of support vector machines based on PSO training SVM face recognition combined
-
-
0下载:
这是一段核主元分析算法的源程序,仅供参考-This is a kernel principal component analysis algorithm source code, for reference only
-
-
0下载:
核主成分分析是一种流行的非线性特征提取方法-
Kernel principal component analysis is a popular nonlinear feature extraction method
-
-
0下载:
核主成分分析方法是主成分分析的改进算法,其采用非线性方法提取主成分-Kernel principal component analysis method is an improved algorithm of principal component analysis, which uses a nonlinear principal components extracted
-
-
0下载:
核主分量分析程序,有简单的代码。易学,分享给大家。-Kernel principal component analysis procedure, a simple code. Learn and share with everyone.
-
-
0下载:
核主成分分析的MATLAB代码,很好用的-Kernel principal component analysis by matlab
-
-
2下载:
是一个关于核主成分分析的MATLAB代码。-It is a MATLAB code on Kernel Principal Component Analysis.
-
-
0下载:
以稀疏子空间聚类以及低秩子空间聚类等基本谱聚类算法为基础,通过
运用核映射算法,融合与数据本身结构相关的局部切线空间函数以及主成分分析
算法建立了可以应对独立子空间聚类、非独立子空间聚类、非线性聚类、混合多
流体聚类问题以及多种含有大数据量的实际问题,包括处理运动分割、人脸识别、
工件识别等情况中的多种类型数据分类的聚类算法,并且引入 Map-Reduce 并行处
理方法优化了算法的计算效率(Based on the basic spectral clustering algorith
-
-
0下载:
实现了主元分析(PCA)和独立分量分析(ICA)相关信号处理。非线性降维。(Implements Principal Component Analysis (PCA) and Independent Component Analysis (ICA) correlation signal. Non-linear dimension reduction using kernel PCA.)
-
-
1下载:
KPCA用于数据特征的降维,先通过核方法,将样本映射到高维空间,再进行主成分分析过程。(KPCA is used to reduce the dimension of data, first through the kernel method, the sample is mapped to high-dimensional space, and then the principal component analysis process.)
-
-
0下载:
Kernel Entropy Component Analysis,KECA方法的作者R. Jenssen自己写的MATLAB代码,文章发表在2010年5月的IEEE TPAMI上面-Kernel Entropy Component Analysis, by R. Jenssen, published in IEEE TPAMI 2010.(We introduce kernel entropy component analysis (kernel ECA) as a new method fo
-
-
0下载:
Robert Jenssen 撰写论文原文(We introduce kernel entropy component analysis (kernel ECA) as a new method for data transformation and dimensionality reduction. Kernel ECA reveals structure relating to the Renyi entropy of the input space data set, estimated
-