搜索资源列表
pattern-recognition-simulation
- 用mushrooms数据对模式识别课程讲述的各种模式分类方法[线性分类,Bayesian分类,Parzen窗,KNN]和特征选择和降维方法[PCA,LDA]进行了模拟,并给出了各类分类方法的结果,-It s the simulations about linear classification ,Bayesian ,Parzen and KNN of pattern recognition .And ,It gives the results.
PCA-dimensionalityreduction
- 跟数据降维有关的matlab 源码 看清题目选择源码-dimensionality reduction of matlab code
PCA
- PCA算法实现对多维数据进行降维,内涵exel数据可供检验-PCA algorithm to achieve dimensionality reduction of multidimensional data, connotation exel data available for inspection
PCA
- 主元分析是对数据进行平移和旋转变换,提取几个比较重要的变量来表示原始空间中的重要信息,实现对数据的降维-Principal component analysis for data translation and rotation transformation to extract a few of the more important variables to represent the important information in the original space, to achiev
pca
- 主成分分析(Principal Copmponent Analysis,简称PCA)是一种常用的机遇变量协方差矩阵对信息进行处理、压缩和提取的有效方法。主成分分析,这种方法可以有效的找出数据中最“主要”的元素和结构,去除噪音和冗余,将原有的复杂数据降维,能够发掘出隐藏在复杂数据背后的简单结构。-PCA (Principal Copmponent Analysis, abbreviated PCA) is a commonly used covariance matrix Opportunity
Full2012
- 1. 本研究利用 PCA 对可见-近红外(450~1 000 nm)、可见光(450~780 nm)和近红外(780~1 000 nm)光谱区域的苹果高光谱图像数据进行降维,获得 PC 图像,通过对 PC 图像进行分析,确定可用于分割损伤和正常区域的有效光谱区域,对比分析几个光谱区域的 PCA 的效果。-but currently no practical system for detecting blood spots and dirt stains exists. In order to
MFA
- 自己写的MFA降维算法。此算法中先进行pCA处理原始数据,然后对处理后数据运用MFA,可用于人脸识别及其它分类问题。很好用。-Write your own MFA dimensionality reduction algorithm. This algorithm first performed pCA processing raw data, processed data and then use MFA, can be used for face recognition and other
HRPCA
- 能够检测异常值 数据降维 特征提取 鲁棒主成分分析方法-Robust PCA
PCAPLDA
- PCA+LDA人脸识别,PCA降维到N-C,(N为训练样本数,C为类别数)使得Sw非奇异,主要是解决小样本,数据集为ORL,每类取9(可改)个图片-PCA+LDA recognition, PCA dimensionality reduction to NC, (N is the number of training samples, C is the number of categories) make Sw nonsingular, mainly to resolve the small s
PCA
- 能够实现对多维数据的PCA主元分析,对数据降维,提取主元。-PCA principal component analysis can be achieved, for data dimensionality reduction, extraction PCA
PCA-KPCA
- 关于数据降维PCA和KPCA的MATLAB程序,程序完整,可以直接运行-PCA and KPCA
drtoolbox
- 对数据进行降维可视化的工具箱。里面有PCA、LLE、LLC等十多种方法。可以自主编程进行对大数据的降维可视化。-Dimensionality reduction data visualization toolkit. There are PCA, LLE, LLC and a dozen other methods. You can customize the programming for large data dimensionality reduction visualization.
pca22
- pca数据的降维,提取99 的主成分.可以直接进行使用进行数据的分类-To reduce the dimensions of the data
PCA-matlab
- pca分析实例,将多维数据降成一维,包括数据处理,计算均值,方差等.(pca Learning materials)
pca
- pca是主成分分析,提取特征,对数据进行降维处理(PCA is principal component analysis, which extracts features and processes the data in reduced dimension)
pca
- 大数据降维方法,具体的处理了图像等,包括数据的冗余部分,利用PCA技术快速降维。(Large data dimensionality reduction method.Specifically dealing with images, including redundant parts of data, and using PCA technology to reduce dimensionality rapidly.)
pca
- 将原始数据由三维降到二维,保证功率在95%达到100%的还原率(Drop data from three dimensions to two dimensions)
pca
- 应用于数据降维的一种MATLAB程序,可以实现从高维到低维的降解(A matlab program applied to data dimensionality reduction can realize the degradation from high dimension to low dimension)