搜索资源列表
-
0下载:
利用k-means算法进行聚类,K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最有分类,使得评价指标J最小。算法采用误差平方和准则函数作为聚类准则函数。-Algorithm using k-means clustering, K-means algorithm Euclidean distance as a similarity measure, it is the pursuit of the vector V corresponding to a initial
-
-
0下载:
VLAD VLAD可以理解为是BOF和fisher vector的折中
BOF是把特征点做kmeans聚类,然后用离特征点最近的一个聚类中心去代替该特征点,损失较多信息;
Fisher vector是对特征点用GMM建模,GMM实际上也是一种聚类,只不过它是考虑了特征点到每个聚类中心的距离,也就是用所有聚类中心的线性组合去表示该特征点,在GMM建模的过程中也有损失信息;
VLAD像BOF那样,只考虑离特征点最近的聚类中心,VLAD保存了每个特征点到离它最近的聚类中心的距离;
-