搜索资源列表
c45
- 该代码是数据挖掘里面的决策树算法 利用c45理论,通过对训练数据的分析判断,计算出各个数据的其它对目标属性的重要程度,即计算出每个其它数据的信息增益值来将训练数据逐步分类,最后得出目标分类,从而实现决策树的生成过程。最后即可利用此决策树来对新的数据进行测试,判断其目标属性的可能值。
Data_Mining_SQL_2008
- 这是《数据挖掘原理与应用—SQL Server 2008数据库》的随书SQL语句、源代码和Excel范例文件,基于DMX,代码主要包括对SQL Server 2008和Excel 2007中已经集成好的数据挖掘算法的应用, 如贝叶斯聚类、决策树、时序、聚类、序列聚类、关联规则、神经网络、逻辑回归、OLAP立方体的等算法,具有极高的使用价值。-This is the " Principles and Applications of data mining-SQL Server 2008 d
DecisionTree
- 数据仓库与挖掘中的决策树算法实现,是数据挖掘与仓库的平时作业-Data warehousing and mining, decision tree algorithm, data mining and warehouse Assignments
ID3
- 大学数据挖掘课程设计决策树算法,对多维数据集挖掘-The university data mining curriculum design decision tree algorithm, the cube mining