搜索资源列表
1
- 建立一个包含6个结点的有向图 利用Dijkstra算法求顶点v0到其它顶点的最短路径。-Includes the establishment of a six-node directed graph using the Dijkstra algorithm for vertex v0 to other vertex of the shortest path.
zuiduan
- 设图的顶点大于1个,不超过30个,每个顶点用一个编号表示(如果一个图有n个顶点,则它们的编号分别为0, 1, 2, 3, …, n-1)。 此题为求有向网中顶点间最短路径问题,可建立以票价为权的邻接矩阵,用Dijkstra算法求最短路径长度。 Dijkstra算法中有一个辅助向量D,表示当前所找到的从源点到其它点的最短路径长度。因为每次都要在D中找最小值,为提高性能,用最小值堆的优先队列存储D值。 -Let the vertex is greater than 1, no more
Dijkstra
- 计算从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题。-Computing the shortest path one vertex to the rest of the vertices , the solution is to map the shortest path problem.
Floyd-CSharp
- 弗洛伊德(Floyd)算法 主要是用于计算图中所有顶点对之间的最短距离长度的算法,如果是要求某一个特定点到图中所有顶点之间的最短距离可以用Dijkstra(迪杰斯特拉)算法来求。 弗洛伊德(Floyd)算法的算法过程是: 1、从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。 2、对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比已知的路径更短。如果是更新它。 把图用邻接矩阵G表示出来