搜索资源列表
Apriori
- 主要是自定义实现了数据挖掘的Apriori算法,能够挖掘频繁N项集等,主要是算法的实现,没有更多界面的东西-Achieved mainly custom data mining Apriori algorithm, to mining frequent itemsets and so N is mainly algorithm, no more interface stuff
apriori
- 本算法用于挖掘最大频繁子集,并且找出所有的关联规则-minning maximum frequency subsets,and associate rules
source-file
- 数据挖掘中聚类算法k-modes的具体实现代码-Data ming ,k-modes algorithms
bayes_net_ex
- 根据dlib18 的C++代码库,利用VS2010进行了里面的实例测试,测试成功了,并对里面的代码进行了针对性的注释。 dlib18具有很强大的数据挖掘功能,我这里只是针对贝叶斯网络进行了实例验证,验证的贝叶斯网络也就是dlib原本给定的例子,只不过原本给定的只有cpp文件,这里提供的是一个工程。希望有兴趣的同学下载参考。-According to the C++ code library of dlib18, VS2010 instance inside test, the test
k
- k均值算法,数据挖掘里面比较基础的算法,实现类聚-k-means algorithm, which based on the comparison of data mining algorithms to achieve clustering
findinformation
- 数据挖掘,智能信息检索,建立索引的时间较久,索引建立后文档查词很快-Data mining, intelligent information retrieval, indexing time longer, document indexing search words soon after
KNN
- KNN数据挖掘经典算法,采用的是iris.data数据,数据在文件包里了,需要改一下路径就可以了。-KNN classical data mining algorithms, using iris.data data, the data in the paper bag, the need to change the path on it.
K-means
- KMeans算法,经典的数据挖掘算法,设置了三个中心点,初始化是采用读取数据集的三个点作为中心的。-KMeans Algorithm, it is very famous data mining algorithm, i set three center, and it was initialed by the data we classify.
Test
- 经典数据挖掘算法,Apriori算法,采用的是C++实现的,数据集已经放到了压缩包里-Classical data mining algorithms, Apriori algorithm is used C++ achieved, the data set has been compressed into a bag
main
- 数据挖掘中的Apriori算啊,用于计算频繁项集-Data Mining Apriori count ah, used to calculate the frequent item sets
waveform-k_medoids
- 数据挖掘作业:编程实现PAM对部分waveform数据集中加20 的高斯噪声, 同时对一副噪声图像进行分割。-Data mining job: programming on the part of the PWM waveform data sets plus a 20 Gaussian noise, While a noise image segmentation.
AprioriAll
- 一个数据挖掘基础算法,AprioriAll算法的C++实现,用来实现序列模式挖掘的-A data mining based algorithm, AprioriAll algorithm C++ implementation, used to achieve sequential pattern mining
load_control
- 第五届泰迪杯数据挖掘比赛数据处理,对其中15个可控变量的数据进行分析,得到与负载的关系。-The fifth Teddy Cup data mining game data processing, of which 15 controllable variables of the data analysis, get the relationship with the load.