搜索资源列表
ImprovedAlgorithmBasedonKernelFunctionandApplicati
- 本文的题目是改进的核函数算法及其在人脸识别中的应用研究。 本文在系统学习现有核函数及支持向量机相关理论的基础上,系统研究了自适应选择核函数算法,通过引入朴素正则风险最小化准则,提出了一种改进的在线核函数算法。算法采用截断误差最小化、合理选取拉格郎日因子等方法对新增样本进行训练,有效地克服了现有方法收敛精度低和不能自适应选择样本的困难。 根据独立分量分析的原理和特点,将改进的核函数算法引入人脸识别的研究中,给出了基于ICA-SVM的人脸识别算法及实现方法。 论文分别应用数值仿
ParticleFilterforStateEstimationBaseOnJumpMarkovMo
- 跳变马尔可夫模型状态估计的粒子滤波算法研究,本文在系统分析传统粒子滤波理论与应用问题的基础上,重点研究了基于跳变马尔可夫状态空间模型的粒子滤波算法。针对混合系统在二维离散状态情形下的混合状态估计问题,给出了基于Rao-Blackwellised粒子滤波的二维离散状态与连续状态的同步估计算法,一定程度上缓解了传统粒子滤波算法在高维状态空间估计中的失效问题,有效提高了状态估计的精度。应用数值仿真计算,对相关粒子滤波算法的性能进行了比较分析。结果表明,本文研究的算法能够有效完成二维离散状态与连续状态的