搜索资源列表
Fault1_PCA
- 利用主成分分析方法,对TE模型产生的故障数据故障1进行故障检测-Using principal component analysis, on the TE model failure data generated by a fault detection fault
methods_of_classification
- 这里和大家分享的几种基础的分类方法,其中包括判别聚类分析、人工神经网络、主成分分析等-Here and to share the basis of several classification methods, including discriminant cluster analysis, artificial neural networks, principal component analysis
PCA
- 主成分分析代码,用matlab实现的,请大家参阅。-Principal component analysis code, matlab implementation, please refer to the.
zhuchengfen1123
- 主成分分析的matlab程序,很有用的程序(It is very useful.Based on the principal component analysis of the matlab program)
pca
- 主成分分析在matlab中应用,已经过实践分析。(Application of principal component analysis in matlab.)
PCA-SVM
- 用于主成分图像svm分类,简单,有很好的程序,适合初学者(SVM for principal component image classification, simple, there are very good procedures for beginners)
PCA
- 该代码主要实现样本的主成分分析,包括一个xls文件的数据样本,一个PCA的主程序。(This code is usedto realize principal component analysis, including a XLS file of data samples and a PCA main program.)
PCA
- 该程序可以实现数据的主成分提取,以及相关系数矩阵,得分矩阵,还有T^2统计量,可视化效果好。(The program can achieve the main component extraction of data, as well as correlation coefficient matrix, scoring matrix, as well as T^2 statistics, visual effect is good.)
zhuchengfen
- 改进的主成分分析法,可算出指标的相对贡献值(The relative contribution value of the index can be calculated by the improved principal component analysis)
pca
- 该脚本可以用于降维或者特征选择,名字为主成分分析。(Dimensionality reduction)
主成分分析法的原理应用及计算步骤
- PCA算法详细介绍:word版可以打印,值得与君共欣赏(PCA:Principal Component Analysis)
PCA分析源代码
- PCA主成分分析源代码,PCA是用于降维是经典方法,现在仍有很多人用主成分分析方法进行降维,降低算法复杂度。(PCA is the source code of principal component analysis. PCA is a classical method for dimensionality reduction. Many people still use principal component analysis to reduce dimension and reduce a
code
- 三维主成分分析、重建及演示的demo,给出了心脏样本的案例(Demonstration of 3D Principal Component Analysis, Reconstruction and Demonstration)
2017Example of principal component analysis
- 主成分分析例子,2017主成分分析例子,博士研究生+多元统计分析课程讲稿(Example of principal component analysis)
主成分分析
- 通过实例来研究SAS软件中的因子分析和主成分分析及二者分析结果的比较。以2012年城镇消费支出资料(数据来源于2013年《中国统计年鉴》)为依据,对全国31个省市进行主成分分析和因子分析,31个省市消费支出指标为X_1—食品,X_2—衣着,X_3—家庭设备及用品,X_4—医疗保健,X_5—交通通信,X_6—文教娱乐,X_7—居住,X_8其他商品和服务。(The factor analysis and principal component analysis of SAS software and
因子分析
- matlab程序关于数学建模里的主成分分析(Matlab program on principal component analysis in mathematical modeling)
pca.m
- 完成主成分分析算法的源程序,算法的源程序,(The source program of the principal component analysis algorithm, the source program of the algorithm,)
主成分分析
- 使用主成分分析方法降维,输出主成分特征根,单位向量,累计贡献率(Dimensionality reduction by using principal component analysis)
PCAR
- 主成分回归算法的python实现,用于进行预测的问题(Python implementation of principal component regression algorithm for prediction)
主成分分析降维代码(直接调用版)
- 主成分分析降维代码,完整版,可以直接放进matlab运行。(Principal component analysis dimension reduction code, complete version, can be directly put into Matlab to run.)