搜索资源列表
Trajectory.rar
- 轨道聚类算法的实现,增加了改进的信息,大家相互交流,Orbital clustering algorithm implementation, an increase of improved information exchanges between U.S.
KNNN.rar
- 一个改进的KNN聚类算法。matlab。包含pdf说明,An Improved Clustering Algorithm KNN. matlab. Pdf that contains
DBSCAN_rar
- 类算法的进一步信息请参考“数据挖掘”或者相关书籍聚类示例数据来自于sxdb.mdb,一个Access数据库。 已知问题及进一步改进建议: 问题:dbscan.cs行64,SortedList不支持重复键,因此若两个数据点距离相同则无法加入集合解决-Algorithm further information please refer to
ppt
- 使用禁忌算法确定聚类簇数目的ppt,该论文改进了聚类算法需事先知道聚类簇中心点的缺点,减少了依赖性-The use of taboo clustering algorithm to determine the number of clusters ppt, the paper has improved clustering algorithm need to know in advance that the shortcomings of clustering cluster center, a
072282
- 提出了一种自动构造特定领域本体的方法,该方法应用术语抽取和多重聚类技术。在术语抽取阶段,通过术语在专业语料与背景语料中出现概率的对比,采用LLR公式对术语进行评分,取得了更好的抽取效果。在层级关系发现过程中,采用上下文共现信息结合HowNet中词语的语义相似度,进行术语间相似度度量,力求获得术语间最合理的相关状况。同时改进了k-medoids聚类算法,更准确地发现术语的层级关系,进而构造出特定领域的本体。-This paper presents an approach to mining dom
VCfcm
- FCM算法是一种基于划分的聚类算法,它的思想就是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。模糊C均值算法是普通C均值算法的改进,普通C均值算法对于数据的划分是硬性的,而FCM则是一种柔性的模糊划分-FCM algorithm is a clustering algorithm based on division, and its thinking that it is making is divided into the same cluster of the bigge
Salama
- 改进的Salama网络拓扑随机生成算法通用Matlab程序,在随机抛撒节点的时候使用了K均值聚类,网络节点分布均匀且疏密得当,边的分布也比较均衡。-Improved algorithm for randomly generated network topology Salama General Matlab program, when the nodes in the random throw using K means clustering, the network node density
agnes
- 此源程序为层次聚类中AGNES聚类法算法部分,测试数据须自己输入,测试前最好先看下源码 测试数据只有2个属性,可根据自己需求修改数据结构体属性个数,与对象间欧式距离计算函数 本源码若算法复杂度有可改进的地方或有BUG请高手指出,计算500条以上的数据时须耐心等待结果 -The source code for the hierarchical clustering algorithm in part AGNES clustering method, the test data requ
Single-Pass
- 改进Single-Pass聚类算法,包括分词、tfidf计算、卡方检验特征选择-Improved Single-Pass Clustering Algorithm
nenggei
- 基于欧几里得距离的聚类分析,详细画出了时域和频域的相关图,包括邓氏关联度、绝对关联度、斜率关联度、改进绝对关联度。- Clustering analysis based on Euclidean distance, Correlation diagram shown in detail the time domain and frequency domain, Including Deng s correlation, absolute correlation, correlation of s
fouqun_v13
- 仿真效果非常好,用MATLAB实现动态聚类或迭代自组织数据分析,包括邓氏关联度、绝对关联度、斜率关联度、改进绝对关联度。- Simulation of the effect is very good, Using MATLAB dynamic clustering or iterative self-organizing data analysis, Including Deng s correlation, absolute correlation, correlation of slope,
sieneng
- 用MATLAB实现动态聚类或迭代自组织数据分析,包括邓氏关联度、绝对关联度、斜率关联度、改进绝对关联度,已调制信号计算其普相关密度。- Using MATLAB dynamic clustering or iterative self-organizing data analysis, Including Deng s correlation, absolute correlation, correlation of slope, improved absolute correlation, M
juiyen
- 采用的是脉冲对消法,包括邓氏关联度、绝对关联度、斜率关联度、改进绝对关联度,用MATLAB实现动态聚类或迭代自组织数据分析。- It uses a pulse of consumer law, Including Deng s correlation, absolute correlation, correlation of slope, improved absolute correlation, Using MATLAB dynamic clustering or iterative sel
hunhui
- 基于K均值的PSO聚类算法,计算晶粒的生长,入门级别程序,包括邓氏关联度、绝对关联度、斜率关联度、改进绝对关联度。- K-means clustering algorithm based on the PSO, Calculation of growth, entry-level program grains Including Deng s correlation, absolute correlation, correlation of slope, improved absolute co
K-means
- 使用k-means算法对图像进行分割,并利用遗传算法对k-means算法加以改进(The k-means algorithm is used for the segment of images, and the genetic algorithm is used to improve the k-means algorithm)
apache-tomcat-6.0.32
- 在汲取 Tomcat 5.5.x优点的基础上,实现了Servlet 2.5和JSP 2.1等特性的支持。除此以外的改进列表如下: · 内存使用优化 · 更大的IO容量 · 重构聚类(Based on the advantages of Tomcat 5.5.x, the support of Servlet 2.5 and JSP 2.1 is realized. The list of improvements is as follows: Memory usage optimizat
第一部分算法程序改后
- 聚类分割实现的MRI图像分割,效果还算可以,硕士算法是在这个基础上改进的。(The MRI image segmentation achieved by clustering segmentation is acceptable. The master algorithm is improved on this basis.)
04657872GAFCM
- 遗传算法改进的模糊C-均值聚类MATLAB源码.模糊C-均值算法容易收敛于局部极小点,为了克服该缺点,将遗传算法应用于模糊C-均值算法(FCM)的优化计算中,由遗传算法得到初始聚类中心,再使用标准的模糊C-均值聚类算法得到最优分类结果。(Improved genetic algorithm and fuzzy C- means clustering MATLAB source. The fuzzy C- means algorithm is easy to converge to local m
IABC_KMC_test_on_Iris_wine_glass
- 改进的人工蜂群算法K均值聚类算法寻找全局最优解(Improved artificial bee colony algorithm K-means clustering algorithm to find the global optimal solution)