搜索资源列表
-
1下载:
使用共轭梯度法解超定方程组的程序,使用fortran语言。本程序亦可用于解适定方程组。-Conjugate gradient method for solving overdetermined equations, the use of fortran language. This procedure can also be posed for the solution equations.
-
-
1下载:
VC实现的,多维函数搜索,无约束优化方法,
(1)最速下降法 (2)阻尼牛顿法(3)共轭梯度法 (4)鲍维尔法(5)变尺度法(6)单纯形法
-VC implementation, multi-dimensional function of search, unconstrained optimization methods, (1), steepest descent method (2) damped Newton' s method (3) conjugate gradient
-
-
3下载:
采用CG法求解稀疏不对称的Ax=b-Implementation of a conjugate-gradient type method for solving sparse linear equations and sparse least-squares problems:
Solve Ax = b
or minimize || Ax- b ||2
or minimize || Ax- b ||2+ d2 ||x||2.
The matrix A may be squ
-
-
0下载:
采用CG法求解稀疏对称奇异矩阵得到的Ax=b-Implementation of a conjugate-gradient type method for solving sparse linear equations:
Solve Ax = b or (A- sI)x = b.
The matrix A- sI must be symmetric but it may be definite or indefinite or singular. The scalar s is a
-
-
0下载:
采用CG法求解稀疏对称非奇异矩阵得到的线性系统Ax=b-Implementation of a conjugate-gradient type method for solving sparse linear equations:
Solve Ax = b or (A- sI)x = b.
The matrix A- sI must be symmetric and nonsingular, but it may be definite or indefinite. The scal
-
-
0下载:
转最优化-约束 无约束共轭梯度法程序(c++)-Switch Optimization- constrained conjugate gradient method for unconstrained program (c++)
-
-
0下载:
最优化方法作业 PRP共轭梯度法 有算法分析 步骤 实例 实验结果和C++源程序-Optimization method operating PRP conjugate gradient method are examples of algorithm analysis step in the experimental results and C++ source code
-
-
0下载:
所传为共轭梯度法和线性加权法,这两种方法在优化中有较大的作用!-The transfer to the conjugate gradient method and linear weighted method, the two methods in optimization have a greater role!
-
-
1下载:
共轭梯度法的prp方法结合非单调法求解多维函数的极小值,在此前必须编写好一为搜索函数-Minimum prp method combined with non-monotonic conjugate gradient method for solving multidimensional function must be written in the previous one for search function
-
-
0下载:
共轭梯度法的prp方法结合wolfe-powell法求解多维函数的极小值,在此前必须编写好一为搜索函数-Minimum of Conjugate Gradient Method the prp method combined wolfe-powell method to solve the multi-dimensional function must be written in the previous one for search function
-
-
0下载:
共轭梯度法的FR方法结合wolfe-powell搜索,求解多维函数的极小值,在此前必须编写好一为搜索函数-FR method combined with the conjugate gradient method wolfe-powell search for solving multidimensional function minimum, must be written in the previous one for the search function
-
-
0下载:
共轭梯度法的FR方法结合黄金分割法求解多维函数的极小值,在此前必须编写好一为搜索函数-Minimum value of the FR conjugate gradient method combined with golden section method to solve the multi-dimensional function must be written in the previous one for search function
-
-
0下载:
共轭梯度法prp结合wolfe-powell搜索求解函数的极值,在之前必须准备好相应的程序-Conjugate gradient method the prp combined wolfe-powell search for solving the extreme value of the function must be ready before the corresponding program
-
-
0下载:
用共轭梯度法求解系数矩阵为对称正定矩阵的二次函数的最优解-The optimal solution of the quadratic function using the conjugate gradient method for solving the coefficient matrix is symmetric positive definite matrix
-
-
0下载:
压缩包里包含了无约束优化问题常用的几种求解方法的源程序:变量轮换法(variable_rotation.m)、最速下降法(steepest_descent.m)、修正牛顿法(modified_newton.m)、共轭梯度法(conjugate_gradient.m)。另外,coefficient_matrix.m为目标函数系数获得矩阵,minval.m为最小值计算函数,gradient.m为梯度计算函数-Compression bag contains unconstrained optimiz
-
-
1下载:
无约束多维极值问题,包含
用模式搜索法求解多维函数的极值
用Rosenbrock法求解多维函数的极值
用单纯形搜索法求解多维函数的极值
用Powell法求解多维函数的极值
用最速下降法求解多维函数的极值
用共轭梯度法求解多维函数的极
用牛顿法求解多维函数的极值
用修正牛顿法求解多维函数的极值
用DFP法求解多维函数的极值
用BFGS法求解多维函数的极值
用信赖域法求解多维函数的极值
用显式最速下降法求正定二次函数的极值
-Unconstrain
-
-
0下载:
共轭梯度法的matlab实现,给出任意的一个对称矩阵,可通过较小的迭代次数得到所要求精度的数值解-Conjugate gradient method matlab to achieve, given any symmetric matrix by a smaller number of iterations to obtain the required accuracy of the numerical solution
-
-
0下载:
fortran的小程序,不完全乔列斯基分解的双复共轭梯度法(ICCG)求解方程组-the fortran applet, incomplete Cholesky decomposition of the dual complex conjugate gradient method (ICCG) solving equations
-
-
0下载:
无约束最优化中经典的共扼梯度法matlab程序-Unconstrained optimization in classic conjugate gradient method matlab program
-
-
0下载:
应用共轭梯度法解微分方程的MATLAB代码-A matlab code of conjugate gradient method used for solving the differential equation.
-