搜索资源列表
Root-mean-square-
- 将N个项的平方和除以N后开平方的结果,即均方根的结果。-Root mean square
mean-functions
- calcules the harmonic,mean square root and geometric mean
CV2D_JDemo
- 对目标进行2维卡尔曼滤波,绘制出了目标轨迹、x、y轴的滤波方差、位置均方根误差和速度均方根误差。-The Kalman filter 2 target, drawn out of the target track, x, y axis variance filter, the position and velocity root mean square error RMSE.
kf_lsd
- 一种考虑观测噪声和系统噪声的滤波算法,绘制出了目标轨迹和跟踪效果、x、y轴的滤波方差、位置均方根误差和速度均方根误差。-Consider an observation noise and system noise filtering algorithm, to map out the trajectory of the target and tracking results, x, y-axis variance filtering, position and velocity RMSE roo
rms
- Root mean Square module, can be synthesized to gates, 300 MHZ operating frequency. Test bench included
tongji
- 时域统计信息量,方差、均方根值、峭度因子、波形因子等-Time domain statistical information, variance, root mean square value, kurtosis factor, waveform factor, etc
image-fusion13
- 这是从网上整理出来的图像融合评价标准,总共有13项性能指标。包括平均梯度,边缘强度,信息熵,灰度均值,标准差(均方差MSE),均方根误差,峰值信噪比(psnr),空间频率(sf),图像清晰度,互信息(mi),结构相似性(ssim),交叉熵(cross entropy),相对标准差。-This is sorted out the online image fusion uation criteria, there are a total of 13 performance indicators
PSO-SVM
- 利用PSO算法优化SVM向量机参数。测试指标为MAPE和均方根误差。-Optimization of SVM Parameters by PSO Algorithm. The test indexes are MAPE and root mean square error.
meisui
- 处理信号的时频分析,包括 MUSIC算法,ESPRIT算法 ROOT-MUSIC算法,最小均方误差(MMSE)的算法。- When processing a signal frequency analysis, Including the MUSIC algorithm, ESPRIT algorithm ROOT-MUSIC algorithm, Minimum mean square error (MMSE) algorithm.
rmse
- 本程序可以用来简单求取数据的(rmse)均方根误差(Root Mean Square Error)
RMS
- 求解阵列信号的均方根值得到成像结果判断损伤位置(The root mean square root of the solution array is worth the damage location of the imaging results)
计算均方根和均值
- 能够计算均方根和均值,啦啦啦啦啦啦啦啦啦啦(Can calculate the mean square root and the mean, cheerleading la la la la)
rmsd
- RMSD: Root Mean Square Deviation 是一种在分子模拟及预测中很常见的评价标准,通过Jacobi变换来的到一个大分子和目标分子的相似程度。常用来评价一个三维结构的(Root Mean Square Deviation is a molecular simulation and forecasting very common assessment standard price, Jacobi's transformation to a macromolecular ta
itoolbox
- 协同区间偏最小二乘 siPLS算法是 N rgaard等对其提出 的 iPLS方法的改进, 其基本算法步骤如下:(1)对原始谱图进行 预处理;(2)在全谱范围内建立全局偏最小二乘模型, 即上节的 模型;(3)在整个光谱区间采用 iPLS建立多个等窗口宽度的子 区间, 假设为 n个;(4)在每个子区间上建立偏最小二乘法模型, 即可得到 n个局部模型;(5)以交叉验证时的均方根误差 RMSE 值为各模型的精度衡量标准, 比较全光谱模型和各局部模型的 精度;(6)组合精度最高的局部子区间