搜索资源列表
chengxu
- 这是基于PCA的人脸识别,用MATLAB编写,包含了K-L变换,奇异值分解等方法,且采用了最小距离分类器-This is based on the PCA face recognition, using MATLAB to prepare, including the KL transform, singular value decomposition and other methods, and the use of the minimum distance classifier
pcaMethods_1.52.0
- 丢失数据的主成分分析,处理不完整数据的pca分解。pcaMatlab-Principal component analysis of missing data, incomplete data processing pca decomposition.pcaMatlab
computing-method
- 列主元消去法解线性方程、三对角阵的LU分解、用迭代法解方程组、求矩阵的LDLT分解及cholesky分解、求函数插值多项式、插值误差、用复化公式求积分方程、计算定积分-Column pca elimination method solving linear equations, LU decomposition of tridiagonal matrix, solutions of equations by iteration method, LDLT decomposition of matr
123
- 用LU分解及列主元高斯消去法解线性方程组(非图形界面)。-Decomposition and out PCA Gaussian elimination method for solving linear equations with LU.
suisang_v27
- 是学习PCA特征提取的很好的学习资料,Pisarenko谐波分解算法,包括最小二乘法、SVM、神经网络、1_k近邻法。- Is a good learning materials to learn PCA feature extraction, Pisarenko harmonic decomposition algorithm, Including the least squares method, the SVM, neural networks, 1 _k neighbor method.
VBLRMat
- 矩阵填充,低秩矩阵恢复,鲁棒PCA,低秩矩阵分解,跟大牛学习(Matrix Completion and Low rank matrix restoration)