搜索资源列表
GS_CH_MOPSO_Grey
- 多目标非线性约束的粒子群算法,采用灰度理论,混沌理论,动态惩罚函数,可针对任何复杂函数进行优化,效果很好-Nonlinear constrained multi-objective particle swarm algorithm, using gray theory, chaos theory, dynamic penalty function can be optimized for any complex function, the effect is very good
pso-constraints-multi
- 多目标粒子群算法,最优的解决方案,使用一个外部文件管理,拥塞机制筛选,灰色设计验过滤。-Multi-objective particle swarm algorithm, the optimal solution using an external file management, congestion mechanism screening, gray design posteriori filtering.
粒子群多目标-程序
- 一个粒子群多目标算法,带有权重自适应,可以画出相应的pareto前沿(A particle swarm multi-objective algorithm, with weight adaptive, can draw corresponding Pareto frontiers.)