搜索资源列表
lda-c
- LDA是一种文档主题生成模型,也称为一个三层贝叶斯概率模型,包含词、主题和文档三层结构。文档到主题服从Dirichlet分布,主题到词服从多项式分布。 LDA是一种非监督机器学习技术,可以用来识别大规模文档集(document collection)或语料库(corpus)中潜藏的主题信息。它采用了词袋(bag of words)的方法,这种方法将每一篇文档视为一个词频向量,从而将文本信息转化为了易于建模的数字信息。但是词袋方法没有考虑词与词之间的顺序,这简化了问题的复杂性,同时也为
caffe-master
- 种基于期望最大化( E M) 算法的局部图像特征的语义提取方法。首先提取图像的局部图像特 征, 统计特征在视觉词汇本中的出现频率, 将图像表示成词袋模型; 引入文本分析中的潜在语义分析技术建立从低层图像 特征到高层图像语义之间的映射模型; 然后利用 E M 算法拟合概率模型, 得到图像局部特征的潜在语义概率分布; 最后利 用该模型提取出的图像在潜在语义上的分布来进行图像分析和理解。-Semantic extraction of local image features based on expe