搜索资源列表
OFDMestimation-LSLMMSE
- 这是关于OFDM系统中信道估计的关键技术matlab仿真程序,具体关于OFDM基于块状导频的信道估计算法仿真,包括LS LMMSE估计算法-This is on the OFDM system channel estimation CITIC key technologies matlab simulation program, specifically on the OFDM pilot block-based channel estimation algorithm for the simu
ofdm-tge
- OFDM程序,这么安排矩阵的目的是为了构造共轭对称矩阵 共轭对称矩阵的特点是 在ifft/fft的矢量上 N点的矢量 在0,N/2点必须是实数 一般选为0 1至N/2点 与 (N/2)+1至N-1点关于N/2共轭对称- BPSK simulation using a carrier cosine wave with ISI clc close all clear all figure(1) n=160 for i=1:n data(i
OFDM
- 基于OFDM的盲信道估计与信号识别的算法,很基本的内容,特别是盲信道估计-Blind channel estimation based on the OFDM signal recognition algorithm, the basic content, especially blind channel estimation
ofdm_channel
- ofdm channel using and measure of PSNR
ofdm
- ofdm信道估计,LS.LMMSE.SVD-channel estimation of OFDM
SAC
- OFDM(Orthogonal Frequency Division Multiplexing)即正交频分复用技术,实际上OFDM是MCM(Multi Carrier Modulation),多载波调制的一种。 OFDM技术由MCM(Multi-Carrier Modulation,多载波调制)发展而来。OFDM技术是多载波传输方案的实现方式之一,它的调制和解调是分别基于IFFT和FFT来实现的,是实现复杂度最低、应用最广的一种多载波传输方案。 在通信系统中,信道所能提供的带
OFDM_MATLAB_
- OFDM(Orthogonal Frequency Division Multiplexing)即正交频分复用技术,实际上OFDM是MCM(Multi Carrier Modulation),多载波调制的一种。 OFDM技术由MCM(Multi-Carrier Modulation,多载波调制)发展而来。OFDM技术是多载波传输方案的实现方式之一,它的调制和解调是分别基于IFFT和FFT来实现的,是实现复杂度最低、应用最广的一种多载波传输方案。 在通信系统中,信道所能提供的带
OFDM
- 本程序采用matlab中的simulink,对OFDM进行信道估计,推荐下-This procedure using simulink of matlab, the OFDM channel estimation, is recommended
loure-box
- This file is about OFDM Channel Estimation Based on Comb Pil-This file is about OFDM Channel Estimation-based on Comb Pil
2708597
- About a MIMO - OFDM channel estimation procedure, for a system of 22 in the program-About a MIMO- OFDM channel estimation procedure, for a system of 22 in the program
registrk
- This file is about OFDM Channel Estimation Based on Comb Pil(This file is about OFDM Channel Estimation -based on Comb Pil)
vhrc
- 这是一篇有关无线连接OFDM信道模型的文章,里面有仿真程序(This is an article about wireless OFDM channel model, there is a simulation program)
287430
- OFDM help material for channel estimation div hr div B 文件列表 B : div di()