搜索资源列表
pintugaga
- 本练习制作拼图游戏,运行效果如图99-1所示。执行本实例后,用鼠标拖动选中的小图片进行拼接,可以拼成一幅完整的图片。本实例的知识点有:鼠标事件的监听,Graphics类和Image类的应用。-pieces of the jigsaw operation results as shown in Figure 99-1. The implementation of this example, using the mouse Drag the selected small mosaic images,
练习99拼图
- 制作拼图游戏,执行本程序后,用鼠标拖动选中的小图片进行拼接,可以拼成一幅完整的图片。-produced pieces of the jigsaw implementation of the procedures, selected with the mouse drag the small mosaic images, makes up a complete picture.
compic
- 别人做的一个拼图的小游戏,可以随意拖拽bmp图片进行游戏-Other people to do a little puzzle game, can play drag bmp picture
pingtu
- 执行本实例后,用鼠标拖动选中的小图片进行拼接,可以拼成一幅完整的图片。本实例的知识点有:鼠标事件的监听,Graphics类和Image类的应用。-After the implementation of this instance, use the mouse to drag the selected image stitching can be taped together to form a complete picture. Knowledge in this instance: the m
puzzle
- 用JAVA实现拼图游戏,用鼠标拖动选中的小图片进行拼接,可以拼成一幅完整的图片。本实例的知识点有:鼠标事件的监听,Graphics类和Image类的应用。-Using JAVA jigsaw puzzle, use the mouse to drag the selected splicing small picture, you can spell a complete picture. Knowledge point of this example are: listening, Graph
pintu002src
- 拼图游戏代码,可以将任何现有的图片变为拼图,用户可以拖动每一个图块,图块靠近后会自动组合。-Jigsaw puzzle code can be any existing picture into a puzzle, the user can drag a block, block will automatically close after the combination.
ditupintu
- 地图拼图游戏是一款基于jQuery实现的简单鼠标拖拽移动拼图游戏源码。 游戏介绍: 1、点击游戏难度以更改 2、点击开始游戏,打乱图片 3、交换图片位置,复原图片-Map jigsaw puzzle is a jQuery based on a simple mouse drag move jigsaw achieve source. Game descr iption: 1. Click on the difficulty of the game to change t
puzzle
- 打开任意一个图片,按照可以设定的切片数进行分割,并打乱排序;然后可以利用鼠标 拖动切片到不同位置进行互换,直到拼合出原来图像。-Open any a picture, and in proportion to the number of slices can be set to break up, and disrupted sort And then can make use of the mouse Drag the slice to different locations to
pingtu
- 在游戏界面显示一幅完整图片,点击游戏开始后该图片自动被分割为指定的n*n个图片小方块并随机散布在游戏界面中,使用鼠标拖动小方块进行拼接,正确归位的方块将被固定,直到全部图片还原,游戏结束。-In the game screen shows a complete picture, click on the game after the beginning of the picture is automatically divided into the specified n* n Images a