搜索资源列表
gmmtrainer
- 这个源码提供了如何利用高斯混合模型去做影像辨识的参数的训练-the source how to use a Gaussian mixture model to do the imaging parameters of literacy training
gmmclassifier
- 这个源码提供了如何利用高斯混合模型去做影像辨识的模型分类-the source how to use a Gaussian mixture model to do imaging Identification Classification Model
training_gmm
- 训练高斯混合模型的程序,尽管此类代码较多,但本程序经过笔者改写优化后,很大程度上避免了普通方法中局部最优的问题。-Gaussian mixture model training procedures, although the code more, but the procedure after the author rewrite optimization, largely avoiding the ordinary method of optimal local issues.
gmm_creation_mle
- 采用期望最大算法最优化初始高斯混合模型的程序,笔者借用ubm自适应方法,很好的解决了模型不收敛的问题。-expectations largest algorithm using optimization initial Gaussian mixture model procedures, the author borrowed ubm adaptive method, a good model is not the solution convergence problem.
gmm_prob
- 计算高斯混合模型先验概率和后验概率的程序,采用大矩阵运算,大大提高了运行速度。-Gaussian mixture model calculated a priori probability and the probability of post-mortem procedures, using a large matrix computation, greatly improved speed.
GMM
- 本混合高斯模型是基于opencv的,利用了系统自带的检测函数,检测效果较好.欢迎切磋!
OPENCV_GMM
- 基于OPENCV的GMM算法,通过时间推移建立视频图像的高斯混合背景模型,并可有效检测其中的运动目标。
Gaussian_mixture_model
- 高斯混合模型[Gaussian mixture model,简称GMM]是单一高斯机率密度函数的延伸,由於GMM 能够平滑地近似任意形状的密度分布,因此近年来常被用在语音与语者辨识,得到不错的效果。 -Gaussian mixture model [Gaussian mixture model, referred to as GMM] are single-Gaussian probability density function of the extension.GMM can approxi
gmm
- 利用混合高斯模型训练视频,获得背景图像,并将背景保存。-training video with GMM model ,then get the background,and store the picture in your computer.
GMM
- 混合高斯模型做的视频跟踪系统,具有良好的跟踪效果-Gaussian mixture model to do a video tracking system, has a good tracking results
GMM3
- 基于混合高斯模型的运动目标检测,能实时检测出完整运动前景,是本人对原来的高斯模型的改进-Gaussian mixture model based motion detection, real-time full motion detection prospects are my original Gaussian model improvements
GMM
- 高斯混合模型和K均值算法的实现代码。看main函数就可以知道分别的计算原理。-Gaussian mixture model and K-means algorithm code. See the main function can know each calculation principle.
GMM
- 针对摄像机固定下的复杂背景环境,对采集到的视频图像的图像数据用混合高斯背景建模方法实现前景/背景分割,实现运动目标检测和跟踪。在进行前景检测前,先对背景进行训练,对图像中每个背景采用一个混合高斯模型进行模拟,每个背景的混合高斯的个数可以自适应。然后在测试阶段,对新来的像素进行GMM匹配,如果该像素值能够匹配其中一个高斯,则认为是背景,否则认为是前景。由于整个过程GMM模型在不断更新学习中,所以对动态背景有一定的鲁棒性。最后通过对一个有树枝摇摆的动态背景进行前景检测,取得了较好的效果。-For c