搜索资源列表
OPENCV_GMM
- 基于OPENCV的GMM算法,通过时间推移建立视频图像的高斯混合背景模型,并可有效检测其中的运动目标。
gmm
- 利用混合高斯模型训练视频,获得背景图像,并将背景保存。-training video with GMM model ,then get the background,and store the picture in your computer.
GMM
- 混合高斯模型做的视频跟踪系统,具有良好的跟踪效果-Gaussian mixture model to do a video tracking system, has a good tracking results
GMM3
- 基于混合高斯模型的运动目标检测,能实时检测出完整运动前景,是本人对原来的高斯模型的改进-Gaussian mixture model based motion detection, real-time full motion detection prospects are my original Gaussian model improvements
GMM
- 针对摄像机固定下的复杂背景环境,对采集到的视频图像的图像数据用混合高斯背景建模方法实现前景/背景分割,实现运动目标检测和跟踪。在进行前景检测前,先对背景进行训练,对图像中每个背景采用一个混合高斯模型进行模拟,每个背景的混合高斯的个数可以自适应。然后在测试阶段,对新来的像素进行GMM匹配,如果该像素值能够匹配其中一个高斯,则认为是背景,否则认为是前景。由于整个过程GMM模型在不断更新学习中,所以对动态背景有一定的鲁棒性。最后通过对一个有树枝摇摆的动态背景进行前景检测,取得了较好的效果。-For c